Skip to main content
Log in

Evolutionary dynamics of cooperation in the public goods game with pool exclusion strategies

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Social exclusion is widely used as a control mechanism to promote cooperative behavior in human societies. However, it remains unclear how such control strategies actually influence the evolutionary dynamics of cooperation. In this paper, we introduce two types of control strategies into a population of agents that play the public goods game, namely prosocial pool exclusion and antisocial pool exclusion, and we use the replicator equation to study the resulting evolutionary dynamics for infinite well-mixed populations. We show that the introduction of prosocial pool exclusion can stabilize the coexistence of cooperators and defectors by means of periodic oscillations, but only in the absence of second-order prosocial pool exclusion. When considering also antisocial pool exclusion, we show that the population exhibits a heteroclinic circle, where cooperators can coexist with other strategists. Moreover, when second-order exclusion is taken into account, we find that prosocial pool exclusion is the dominant strategy, regardless of whether the second-order exclusion is prosocial or antisocial. In comparison with punishment, we conclude that prosocial pool exclusion is a more effective control mechanism to curb free-riding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  2. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. B. Am. Math. Soc. 40(4), 479–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Perc, M., Szolnoki, A., Szabó, G.: Restricted connections among distinguished players support cooperation. Phys. Rev. E 78(6), 066101 (2008)

    Article  Google Scholar 

  4. Perc, M., Szolnoki, A.: Coevolutionary games—a mini review. BioSystems 99(2), 109–125 (2010)

    Article  Google Scholar 

  5. Xia, C., Wang, L., Sun, S., Wang, J.: An SIR model with infection delay and propagation vector in complex networks. Nonlinear Dyn. 69(3), 927–934 (2012)

    Article  MathSciNet  Google Scholar 

  6. Xia, C., Miao, Q., Wang, J., Ding, S.: Evolution of cooperation in the traveler’s dilemma game on two coupled lattices. Appl. Math. Comput. 246, 389–398 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Javarone, M.A.: Statistical physics of the spatial Prisoner’s dilemma with memory-aware agents. Eur. Phys. J. B 89(2), 1 (2016)

    Article  MathSciNet  Google Scholar 

  8. Amaral, M.A., Wardil, L., Perc, M., da Silva, J.K.: Stochastic win-stay-lose-shift strategy with dynamic aspirations in evolutionary social dilemmas. Phys. Rev. E 94(3), 032317 (2016)

    Article  Google Scholar 

  9. Riehl, J.R., Cao, M.: Towards optimal control of evolutionary games on networks. IEEE Trans. Automat. Cont. 62(1), 458–462 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, J., Zheng, Y., Wang, L.: Nash equilibrium topology of multi-agent systems with competitive groups. IEEE Trans. Ind. Electron. 64(6), 4956–4966 (2017)

    Article  Google Scholar 

  11. Amaral, M.A., Javarone, M.A.: Heterogeneous update mechanisms in evolutionary games: mixing innovative and imitative dynamics. Phys. Rev. E 97(4), 042305 (2018)

    Article  Google Scholar 

  12. Javarone, M.A.: The Host-Pathogen game: an evolutionary approach to biological competitions. Front. Phys. 6, 94 (2018)

    Article  Google Scholar 

  13. He, N., Chen, X., Szolnoki, A.: Central governance based on monitoring and reporting solves the collective-risk social dilemma. Appl. Math. Comput. 347, 334–341 (2019)

    MathSciNet  Google Scholar 

  14. Chen, X., Brännström, Å., Dieckmann, U.: Parent-preferred dispersal promotes cooperation in structured populations. Proc. R. Soc. B 286(1895), 20181949 (2019)

    Article  Google Scholar 

  15. Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95(9), 098104 (2005)

    Article  Google Scholar 

  16. Tanimoto, J., Sagara, H.: Relationship between dilemma occurrence and the existence of a weakly dominant strategy in a two-player symmetric game. BioSystems 90(1), 105–114 (2007)

    Article  Google Scholar 

  17. Tanimoto, J.: Promotion of cooperation by payoff noise in a \(2\times 2\) game. Phys. Rev. E 76(4), 041130 (2007)

    Article  MathSciNet  Google Scholar 

  18. Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454(7201), 213 (2008)

    Article  Google Scholar 

  19. Szolnoki, A., Perc, M.: Coevolution of teaching activity promotes cooperation. New J. Phys. 10(4), 043036 (2008)

    Article  Google Scholar 

  20. Santos, F.C., Francisco, C., Pacheco, J.M.: Risk of collective failure provides an escape from the tragedy of the commons. Proc. Natl. Acad. Sci. USA 108(26), 10421–10425 (2011)

    Article  Google Scholar 

  21. Sasaki, T., Brännström, A., Dieckmann, U., Sigmund, K.: The take-it-or-leave-it option allows small penalties to overcome social dilemmas. Proc. Natl. Acad. Sci. USA 109(4), 1165–1169 (2012)

    Article  MATH  Google Scholar 

  22. Xia, C., Wang, J., Wang, L., Sun, S., Sun, J., Wang, J.: Role of update dynamics in the collective cooperation on the spatial snowdrift games: beyond unconditional imitation and replicator dynamics. Chaos Solitons Fract. 45(9–10), 1239–1245 (2012)

    Article  MathSciNet  Google Scholar 

  23. Wang, C., Wang, L., Wang, J., Sun, S., Xia, C.: Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices. Appl. Math. Comput. 293, 18–29 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Perc, M., Jordan, J.J., Rand, D.G., Wang, Z., Boccaletti, S., Szolnoki, A.: Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shi, L., Shen, C., Geng, Y., Chu, C., Meng, H., Perc, M., Boccaletti, S., Wang, Z.: Winner-weaken-loser-strengthen rule leads to optimally cooperative interdependent networks. Nonlinear Dyn. 96(1), 49–56 (2019)

    Article  Google Scholar 

  26. Nowak, M.A., Sigmund, K.: The dynamics of indirect reciprocity. J. Theor. Biol. 194(4), 561–574 (1998)

    Article  Google Scholar 

  27. Clutton-Brock, T.: Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296(5565), 69–72 (2002)

    Article  Google Scholar 

  28. Fu, F., Hauert, C., Nowak, M.A., Wang, L.: Reputation-based partner choice promotes cooperation in social networks. Phys. Rev. E 78(2), 026117 (2008)

    Article  Google Scholar 

  29. Hauert, C.: Replicator dynamics of reward reputation in public goods games. J. Theor. Biol. 267(1), 22–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tanimoto, J., Brede, M., Yamauchi, A.: Network reciprocity by coexisting learning and teaching strategies. Phys. Rev. E 85(3), 032101 (2012)

    Article  Google Scholar 

  31. Chen, X., Szolnoki, A., Perc, M.: Competition and cooperation among different punishing strategies in the spatial public goods game. Phys. Rev. E 92(1), 012819 (2015)

    Article  MathSciNet  Google Scholar 

  32. Szolnoki, A., Perc, M.: Antisocial pool rewarding does not deter public cooperation. Proc. R. Soc. B 282(1816), 20151975 (2015)

    Article  Google Scholar 

  33. Chen, M., Wang, L., Sun, S., Wang, J., Xia, C.: Evolution of cooperation in the spatial public goods game with adaptive reputation assortment. Phys. Lett. A 380(1–2), 40–47 (2016)

    Article  MATH  Google Scholar 

  34. Szolnoki, A., Perc, M.: Second-order free-riding on antisocial punishment restores the effectiveness of prosocial punishment. Phys. Rev. X 7(4), 041027 (2017)

    Google Scholar 

  35. Chen, X., Szolnoki, A.: Punishment and inspection for governing the commons in a feedback-evolving game. PLoS Comput. Biol. 14(7), e1006347 (2018)

    Article  Google Scholar 

  36. Su, Q., Li, A., Wang, L., Eugene Stanley, H.: Spatial reciprocity in the evolution of cooperation. Proc. R. Soc. B 286(1900), 20190041 (2019)

    Article  Google Scholar 

  37. Fehr, E., Gächter, S.: Cooperation and punishment in public goods experiments. Am. Econ. Rev. 90(90), 980–994 (2000)

    Article  Google Scholar 

  38. Boyd, R., Gintis, H., Bowles, S., Richerson, P.J.: The evolution of altruistic punishment. Proc. Natl. Acad. Sci. USA 100(6), 3531–3535 (2003)

    Article  Google Scholar 

  39. Szolnoki, A., Szabó, G., Czakó, L.: Competition of individual and institutional punishments in spatial public goods games. Phys. Rev. E 84(4), 046106 (2011)

    Article  Google Scholar 

  40. Perc, M.: Sustainable institutionalized punishment requires elimination of second-order free-riders. Sci. Rep. 2, 344 (2012)

    Article  Google Scholar 

  41. Vasconcelos, V.V., Santos, F.C., Pacheco, J.M.: A bottom-up institutional approach to cooperative governance of risky commons. Nat. Clim. Change 3(9), 797 (2013)

    Article  Google Scholar 

  42. Chen, X., Szolnoki, A., Perc, M.: Probabilistic sharing solves the problem of costly punishment. New J. Phys. 16(8), 083016 (2014)

    Article  MathSciNet  Google Scholar 

  43. Wu, J.J., Zhang, B., Zhou, Z., He, Q.Q., Zheng, X., Cressman, R., Tao, Y.: Costly punishment does not always increase cooperation. Proc. Natl. Acad. Sci. USA 106(41), 17448–17451 (2009)

    Article  Google Scholar 

  44. Baumard, N.: Has punishment played a role in the evolution of cooperation? A critical review. Mind Soc. 9(2), 171–192 (2010)

    Article  Google Scholar 

  45. Hauser, O.P., Nowak, M.A., Rand, D.G.: Punishment does not promote cooperation under exploration dynamics when anti-social punishment is possible. J. Theor. Biol. 360(25), 163–171 (2014)

    Article  MATH  Google Scholar 

  46. Dreber, A., Rand, D.G.: Retaliation and antisocial punishment are overlooked in many theoretical models as well as behavioral experiments. Behav. Brain Sci. 35(1), 24–24 (2012)

    Article  Google Scholar 

  47. Irwin, K., Horne, C.: A normative explanation of antisocial punishment. Soc. Sci. Res. 42(2), 562–570 (2013)

    Article  Google Scholar 

  48. Rand, D.G., Armao IV, J.J., Nakamaru, M., Ohtsuki, H.: Anti-social punishment can prevent the co-evolution of punishment and cooperation. J. Theor. Biol. 265(4), 624–632 (2010)

    Article  MathSciNet  Google Scholar 

  49. Rand, D.G., Nowak, M.A.: The evolution of anti-social punishment in optional public goods games. Nat. Commun. 2, 434 (2011)

    Article  Google Scholar 

  50. Ouwerkerk, J.W., Kerr, N.L., Gallucci, M., Van Lange, P.M.: Avoiding the social death penalty: ostracism and cooperation in social dilemmas. In: Williams, K.D., Forgas, J.P., von Hippel, W. (eds.) The Social Outcast: Ostracism, Social Exclusion, Rejection, and Bullying, pp. 321–332. Psychology Press, New York (2005)

    Google Scholar 

  51. Sasaki, T., Uchida, S.: The evolution of cooperation by social exclusion. Proc. R. Soc. B 280(1752), 20122498 (2012)

    Article  Google Scholar 

  52. Li, K., Cong, R., Wu, T., Wang, L.: Social exclusion in finite populations. Phys. Rev. E 91(4), 042810 (2015)

    Article  Google Scholar 

  53. Liu, L., Chen, X., Szolnoki, A.: Competitions between prosocial exclusions and punishments in finite populations. Sci. Rep. 7, 46634 (2017)

    Article  Google Scholar 

  54. Szolnoki, A., Chen, X.: Alliance formation with exclusion in the spatial public goods game. Phys. Rev. E 95(5), 052316 (2017)

    Article  Google Scholar 

  55. Liu, L., Wang, S., Chen, X., Perc, M.: Evolutionary dynamics in the public goods games with switching between punishment and exclusion. Chaos 28(10), 103105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sigmund, K., Silva, D.H., Traulsen, A., Hauert, C.: Social learning promotes institutions for governing the commons. Nature 466(7308), 861–863 (2010)

    Article  Google Scholar 

  57. Twenge, J.M., Baumeister, R.F., DeWall, C.N., Ciarocco, N.J., Bartels, J.M.: Social exclusion decreases prosocial behavior. J. Pers. Soc. Psychol. 92(1), 56 (2007)

    Article  Google Scholar 

  58. Bernstein, M.J., Young, S.G., Brown, C.M., Sacco, D.F., Claypool, H.M.: Adaptive responses to social exclusion: social rejection improves detection of real and fake smiles. Psychol. Sci. 19(10), 981–983 (2008)

    Article  Google Scholar 

  59. Carter-Sowell, A.R., Chen, Z., Williams, K.D.: Ostracism increases social susceptibility. Soc. Influ. 3(3), 143–153 (2008)

    Article  Google Scholar 

  60. Pollatos, O., Matthias, E., Keller, J.: When interoception helps to overcome negative feelings caused by social exclusion. Front. Psychol. 6, 786 (2015)

    Article  Google Scholar 

  61. Schuster, P., Sigmund, K.: Replicator dynamics. J. Theor. Biol. 100(3), 533–538 (1983)

    Article  MathSciNet  Google Scholar 

  62. Hauert, C., De, M.S., Hofbauer, J., Sigmund, K.: Replicator dynamics for optional public good games. J. Theor. Biol. 218(2), 187–194 (2002)

    Article  MathSciNet  Google Scholar 

  63. Nowak, M.A., Sigmund, K.: Evolutionary dynamics of biological games. Science 303(5659), 793–799 (2004)

    Article  Google Scholar 

  64. Szolnoki, A., Chen, X.: Benefits of tolerance in public goods games. Phys. Rev. E 92(4), 042813 (2015)

    Article  Google Scholar 

  65. Weitz, J.S., Eksin, C., Paarporn, K., Brown, S.P., Ratcliff, W.C.: An oscillating tragedy of the commons in replicator dynamics with game-environment feedback. Proc. Natl. Acad. Sci. USA 113(47), E7518–E7525 (2016)

    Article  Google Scholar 

  66. Wang, Q., He, N., Chen, X.: Replicator dynamics for public goods game with resource allocation in large populations. Appl. Math. Comput. 328, 162–170 (2018)

    MathSciNet  MATH  Google Scholar 

  67. Sasaki, T., Unemi, T.: Replicator dynamics in public goods games with reward funds. J. Theor. Biol. 287(1), 109–114 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. Szolnoki, A., Perc, M., Szabó, G.: Phase diagrams for three-strategy evolutionary prisoner’s dilemma games on regular graphs. Phys. Rev. E 80(5), 056104 (2009)

    Article  Google Scholar 

  69. Wang, Z., Xu, B., Zhou, H.J.: Social cycling and conditional responses in the Rock–Paper–Scissors game. Sci. Rep. 4, 5830 (2014)

    Article  Google Scholar 

  70. Sigmund, K., Hauert, C., Traulsen, A., Silva, D.H.: Social control and the social contract: the emergence of sanctioning systems for collective action. Dyn. Games Appl. 1(1), 149–171 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 61503062) and by the Slovenian Research Agency (Grant Nos. J1-7009, J4-9302, J1-9112 and P1-0403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Chen.

Ethics declarations

Conflict of interest

The authors declare that no competing interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendixes

Appendixes

1.1 Appendix A

In order to explore the evolutionary dynamics of \(S_{4}\), which we discuss in Sect. 3, we first study the dynamics of each edge of \(S_{4}\).

On the edge \(D-\)\(ED\) (\(x+z=0\) and \(y+w=1\)), we have \(\dot{y}=y(1-y)(P_{D}-P_{ED})=y(1-y)\delta _{A}>0\), and thus, the direction of the dynamics goes from ED to D.

On the edge \(C-\)\(EC\) (\(y+w=0\) and \(x+z=1\)), we have \(\dot{x}=x(1-x)(P_{C}-P_{EC})=x(1-x)\delta _{P}>0\); therefore, the direction of the evolution goes from EC to C.

On the edge \(C-D\) (\(z+w=0\) and \(x+y=1\)), we have \(\dot{y}=y(1-y)(P_{D}-P_{C})=-y(1-y)(\frac{rc}{N}-c)>0\); therefore, the direction of the evolution goes from C to D.

On the edge \(C-\)\(ED\) (\(z+y=0\) and \(x+w=1\)), we have \(\dot{w}=w(1-w)(P_{ED}-P_{C})=w(1-w)\{\frac{rc[1-w-(1-w)^{N-1}]}{w}-\delta _{A}+c\}\); therefore, when the antisocial exclusion cost is less than the cost of cooperation, namely \(\delta _{A}<c\), the direction of the evolution goes from C to ED.

On the edge \(D-\)\(EC\) (\(x+w=0\) and \(y+z=1\)), we have \(\dot{z}=z(1-z)(P_{EC}-P_{D})=z(1-z)(rc-c-\delta _{P})>0\), and thus, the direction of the dynamics goes from D to EC.

On the edge \(ED-\)\(EC\) (\(x+y=0\) and \(w+z=1\)), we have \(\dot{w}=w(1-w)(P_{ED}-P_{EC})=w(1-w)[-\delta _{A}+c+\delta _{P}-(1-w)^{N-1}rc]\); thus, there exist an equilibrium, namely \(w=1-[\frac{c+\delta _{P}-\delta _{A}}{rc}]^{\frac{1}{N-1}}\).

Next, we investigate the evolutionary dynamics of each face. We have discussed the dynamics on the face \(C-D-\)\(EC\) in Sect. 2, and the three strategies can coexist in the population.

On the face \(C-D-\)\(ED\) (\(z=0\) and \(x+y+w=1\)), we have

$$\begin{aligned} P_{C}= & {} \sum _{N_{C}=0}^{N-1}\left( {\begin{array}{c}N-1\\ N_{C}\end{array}}\right) x^{N_{C}}(1-x-w)^{N-N_{C}-1}\\&\times \, \frac{rc(N_{C}+1)}{N}-c\\= & {} (1-w)^{N-1}\frac{rc}{N}\frac{1-w+(N-1)x}{1-w}-c,\\ P_{ED}= & {} \sum _{N_{C}=0}^{N-1}\left( {\begin{array}{c}N-1\\ N_{C}\end{array}}\right) x^{N_{C}}(1-x)^{N-N_{C}-1}\frac{rcN_{C}}{N-N_{C}}-\,\delta _{A}\\= & {} \frac{rcx(1-x^{N-1})}{1-x}-\,\delta _{A},\\ P_{D}= & {} \sum _{N_{C}=0}^{N-1}\left( {\begin{array}{c}N-1\\ N_{C}\end{array}}\right) x^{N_{C}}(1-x-w)^{N-N_{C}-1}\frac{rcN_{C}}{N}\\&+\,\sum _{N_{C}=0}^{N-1}\sum _{N_{ED}=1}^{N-N_{C}-1}\left( {\begin{array}{c}N-1\\ N_{C}\end{array}}\right) \left( {\begin{array}{c}N-N_{C}-1\\ N_{ED}\end{array}}\right) x^{N_{C}}w^{N_{ED}}\\&\times \,(1-x-w)^{N-N_{ED}-N_{C}-1}\frac{rcN_{c}}{N-N_{C}}\\= & {} (1-w)^{N-1}\frac{rc}{N}\frac{(N-1)x}{1-w}\\&+\,\frac{rcx[(1-w-x)+wx^{N-1}-(1-w)^{N-1}(1-x)]}{(1-x)(1-w-x)}. \end{aligned}$$

We know that \(P_{C}<P_{D}\) is satisfied, and thus, there is no interior fixed point. In addition, the stability of three boundary points can be described as follow.

  1. (1)

    For \((x,y,w)=(0,0,1)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} -c+\delta _{A}&0\\ 0&\delta _{A} \end{bmatrix}; \end{aligned}$$

    thus, the fixed point is unstable.

  2. (2)

    For \((x,y,w)=(1,0,0)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} rc(N-2)+c-\delta _{A}&rc(N-2)-\delta _{A}+\frac{rc}{N}\\ 0&c-\frac{rc}{N} \end{bmatrix}; \end{aligned}$$

    thus, the fixed point is unstable.

  3. (3)

    For \((x,y,w)=(0,1,0)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} \frac{rc}{N}-c&0\\ -\frac{rc}{N}+c-\delta _{A}&-\delta _{A} \end{bmatrix}; \end{aligned}$$

    thus, the fixed point is stable.

On the face \(D-\)\(EC\)ED (\(x=0\) and \(y+z+w=1\)), the expected payoffs for these three strategies can be given by

$$\begin{aligned} P_{EC}= & {} \sum _{N_{EC}=0}^{N-1}\left( {\begin{array}{c}N-1\\ N_{EC}\end{array}}\right) z^{N_{EC}}(1-z-w)^{N-N_{EC}-1}rc\nonumber \\&-\,c-\delta _{P},\nonumber \\= & {} (1-w)^{N-1}rc-c-\delta _{P} \end{aligned}$$
(39)
$$\begin{aligned} P_{D}= & {} 0,\end{aligned}$$
(40)
$$\begin{aligned} P_{ED}= & {} -\delta _{A}. \end{aligned}$$
(41)

Based on the above payoff expressions, we know that there is no interior fixed point. Furthermore, the stability of three boundary equilibria can be given as follows.

  1. (1)

    For \((y,z,w)=(0,0,1)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} \delta _{A}&0\\ 0&\delta _{A}-c-\delta _{P} \end{bmatrix}; \end{aligned}$$

    thus, this equilibrium is unstable.

  2. (2)

    For \((y,z,w)=(0,1,0)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} -rc+c+\delta _{P}&0\\ -\delta _{A}&-rc+c+\delta _{P}-\delta _{A} \end{bmatrix}; \end{aligned}$$

    thus, this equilibrium is stable.

  3. (3)

    For \((y,z,w)=(1,0,0)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} -\delta _{A}&-(rc-c-\delta _{P}+\delta _{A})\\ 0&rc-c-\delta _{P} \end{bmatrix}; \end{aligned}$$

    thus, this equilibrium is unstable.

  4. (4)

    For \((y,z,w)=(0, [\frac{c+\delta _{P}-\delta _{A}}{rc}]^{\frac{1}{N-1}},1-[\frac{c+\delta _{P}-\delta _{A}}{rc}]^{\frac{1}{N-1}})\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} \delta _{A}&0\\ a_{21}&(1-z)(N-1)z^{N-1}rc \end{bmatrix}, \end{aligned}$$

    where \(a_{21}=(1-z)(N-1)z^{N-1}rc-z\delta _{A}\); thus, this equilibrium is unstable.

On the face EDCEC (\(y=0\) and \(x+z+w=1\)), the expected payoffs for these three strategies can be described by

$$\begin{aligned} P_{EC}= & {} \sum _{N_{EC}=0}^{N-1}\left( {\begin{array}{c}N-1\\ N_{EC}\end{array}}\right) z^{N_{EC}}(1-z-w)^{N-N_{EC}-1}rc\nonumber \\&-\,c-\delta _{P}\nonumber \\= & {} (1-w)^{N-1}rc-c-\delta _{P}, \end{aligned}$$
(42)
$$\begin{aligned} P_{C}= & {} (1-w)^{N-1}rc-c, \end{aligned}$$
(43)
$$\begin{aligned} P_{ED}= & {} \sum _{N_{ED}=0}^{N-1}\left( {\begin{array}{c}N-1\\ N_{ED}\end{array}}\right) x^{N-N_{ED}-1}(1-z-x)^{N_{ED}}\nonumber \\&\times \,\frac{rc(N-N_{ED}-1)}{N_{ED}+1}-\delta _{A}\nonumber \\= & {} \frac{rcx[(1-z)^{N-1}-x^{N-1}]}{1-x-z}-\delta _{A}, \end{aligned}$$
(44)

Based on the payoff expressions, we can get that \(P_{C}>P_{EC}\). Therefore, there is no interior fixed point in \(S_{3}\). And the stability of three boundary fixed points can be described as follows.

  1. (1)

    For \((x,z,w)=(0,0,1)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} \delta _{A}-c&0\\ 0&\delta _{A}-c-\delta _{P} \end{bmatrix}; \end{aligned}$$

    thus, this equilibrium is stable,

  2. (2)

    For \((x,z,w)=(0,1,0)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} \delta _{P}&0\\ -(rc-c+\delta _{A})&-(rc-c-\delta _{P}+\delta _{A}) \end{bmatrix}; \end{aligned}$$

    thus, this equilibrium is unstable.

  3. (3)

    for \((x,z,w)=(1,0,0)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} rc(N-2)+c-\delta _{A}&a_{12}\\ 0&-\delta _{P} \end{bmatrix}, \end{aligned}$$

    where \(a_{12}=rc(N-2)+c+\delta _{P}-\delta _{A}\), and thus, this equilibrium is unstable.

  4. (4)

    For \((x,z,w)=(0, [\frac{c+\delta _{P}-\delta _{A}}{rc}]^{\frac{1}{N-1}},1-[\frac{c+\delta _{P}-\delta _{A}}{rc}]^{\frac{1}{N-1}})\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} \delta _{P}&0\\ a_{21}&rc(N-1)(1-z)z^{N-1} \end{bmatrix}, \end{aligned}$$

    where \(a_{21}=rcz(1-z)[(N-1)z^{N-2}-(1-z)^{N-2}]-z\delta _{P}\); thus, this equilibrium is unstable.

1.2 Appendix B

Then, we explore the evolutionary dynamics of \(S_{4}\), which we discuss in Sect. 5.

On the edge \(C-\)\(EC\) (\(y+w=0\) and \(x+z=1\)), we have \(\dot{z}=z(1-z)(P_{EC}-P_{C})=z(1-z)\{\frac{rc[1-(1-z)^{N-1}]}{z}-\delta _{P}\}\) since \(\frac{1-(1-z)^{N-1}}{z}\) decreases with increasing z. Thus, there is not interior equilibrium for \(\delta _{P}<rc\). As a result, the direction of the evolution goes from C to EC. The dynamics of other edges of simplex \(S_{4}\) are same to those in Sect. 3.

Next, we investigate the evolutionary dynamics on each face. We have discussed the situation on the face \(C-D-\)\(EC\) in Sect. 4. Then, on the face \(C-D-\)\(ED\) (\(z=0\) and \(x+y+w=1\)), the expected payoffs for these three strategies can be given as

$$\begin{aligned} P_{C}= & {} \sum _{N_{C}=0}^{N-1}\left( {\begin{array}{c}N-1\\ N_{C}\end{array}}\right) x^{N_{C}}(1-x-w)^{N-N_{C}-1}\nonumber \\&\times \,\frac{rc(N_{C}+1)}{N}-c\nonumber \\= & {} (1-w)^{N-1}\frac{rc[(N-1)x+(1-w)]}{N(1-w)}-c, \end{aligned}$$
(45)
$$\begin{aligned} P_{D}= & {} \sum _{N_{C}=0}^{N-1}\left( {\begin{array}{c}N-1\\ N_{C}\end{array}}\right) x^{N_{C}}(1-x-w)^{N-N_{C}-1}\frac{rcN_{C}}{N}\nonumber \\= & {} (1-w)^{N-1}\frac{rc(N-1)x}{N(1-w)}, and\end{aligned}$$
(46)
$$\begin{aligned} P_{ED}= & {} \sum _{N_{ED}=0}^{N-1}\sum _{N_{D}=0}^{N-1-N_{ED}}\left( {\begin{array}{c}N-1\\ N_{ED}\end{array}}\right) \left( {\begin{array}{c}N-1-N_{ED}\\ N_{D}\end{array}}\right) \nonumber \\&\times \, x^{N-N_{ED}-N_{D}-1}(1-x-y)^{N_{ED}}y^{N_{D}}\nonumber \\\times & {} \frac{rc(N-N_{ED}-N_{D}-1)}{N_{ED}+1}-\delta _{A}\nonumber \\= & {} \frac{rcx[1-(x+y)^{N-1}]}{1-x-y}-\delta _{A}. \end{aligned}$$
(47)

Since \(P_{D}>P_{C}\), there is no interior point. And the stability of three boundary points can be described as follows

  1. (1)

    For \((x,y,w)=(0,0,1)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} -c+\delta _{A}&0\\ 0&\delta _{A} \end{bmatrix}; \end{aligned}$$

    thus, this fixed point is unstable.

  2. (2)

    For \((x,y,w)=(1,0,0)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} rc(N-2)+c-\delta _{A}&rc(N-2)-\delta _{A}+\frac{rc}{N}\\ 0&c-\frac{rc}{N} \end{bmatrix}; \end{aligned}$$

    thus, the fixed point is unstable.

  3. (3)

    For \((x,y,w)=(0,1,0)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} \frac{rc}{N}-c&0\\ -\frac{rc}{N}+c-\delta _{A}&-\delta _{A} \end{bmatrix}; \end{aligned}$$

    thus, this fixed point is stable.

The dynamic on the face \(D-\)\(EC\)ED is the same to those in the situation without second-order exclusion. On the face \(C-\)\(EC\)ED (\(y=0\) and \(x+z+w=1\)), the expected payoffs of these three strategies can be given by

$$\begin{aligned} P_{C}= & {} (1-z-w)^{N-1}rc-c,\end{aligned}$$
(48)
$$\begin{aligned} P_{EC}= & {} \sum _{N_{C}=0}^{N-1}\left( {\begin{array}{c}N-1\\ N_{C}\end{array}}\right) x^{N_{C}}(1-x-w)^{N-N_{C}-1}\nonumber \\&\quad \frac{rcN}{N-N_{C}}-c-\delta _{P},\nonumber \\= & {} \frac{rc[(1-w)^{N}-(1-w-z)^{N}]}{z}-c-\delta _{P},\nonumber \\\end{aligned}$$
(49)
$$\begin{aligned} P_{ED}= & {} \sum _{N_{ED}=0}^{N-1}\left( {\begin{array}{c}N-1\\ N_{ED}\end{array}}\right) (1-z-w)^{N-N_{ED}-1}w^{N_{ED}}\nonumber \\&\times \,\frac{rc(N-N_{ED}-1)}{N_{ED}+1}-\delta _{A},\nonumber \\= & {} \frac{rcx[(1-z)^{N-1}-x^{N-1}]}{w}-\delta _{A}. \end{aligned}$$
(50)

Solving \(P_{C}=P_{ED}\) yields \(w{=}\frac{rcx(1-z)[(1-z)^{N-2}-x^{N-2}]}{\delta _{A}-c}\); therefore, there is not interior fixed point for \(\delta _{A}<c\). In addition, the stability of these four boundary points can be described as follows.

  1. (1)

    For \((x,z,w)=(0,0,1)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} -c+\delta _{A}&0\\ 0&\delta _{A}-c-\delta _{P} \end{bmatrix}; \end{aligned}$$

    thus, this fixed point is stable.

  2. (2)

    For \((x,z,w)=(1,0,0)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} rc(N-2)+c-\delta _{A}&-(rc-c+\delta _{A}-\delta _{P})\\ 0&rc(N-1)-\delta _{P} \end{bmatrix}; \end{aligned}$$

    thus, this fixed point is unstable.

  3. (3)

    For \((x,z,w)=(0,1,0)\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} -rc+\delta _{P}&0\\ c-\delta _{A}&-(rc-c-\delta _{P}+\delta _{A}) \end{bmatrix}; \end{aligned}$$

    thus, this fixed point is stable.

  4. (4)

    For \((x,z,w)=(0,[\frac{c+\delta _{P}-\delta _{A}}{rc}]^{\frac{1}{N-1}},1-[\frac{c+\delta _{P}-\delta _{A}}{rc}]^{\frac{1}{N-1}})\), the Jacobian is

    $$\begin{aligned} J=\begin{bmatrix} \delta _{A}-c&0\\ a_{21}&rcz^{N-1}(1-z)(N-1) \end{bmatrix}, \end{aligned}$$

    where \(a_{21}=rcz(1-z)[Nz^{N-2}-(1-z)^{N-2}]-z(\delta _{A}-c)\); thus, this equilibrium is unstable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Chen, X. & Perc, M. Evolutionary dynamics of cooperation in the public goods game with pool exclusion strategies. Nonlinear Dyn 97, 749–766 (2019). https://doi.org/10.1007/s11071-019-05010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05010-9

Keywords

Navigation