Skip to main content
Log in

Wronskian \(\pmb {N}\)-soliton solutions to a generalized KdV equation in (\(\pmb {2+1}\))-dimensions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to construct Wronskian solutions to a generalized KdV equation in (\(2+1\))-dimensions, which possesses a trilinear form. On the basis of two useful properties associated with Hirota differential operators, a general Wronskian formulation is established and the involved functions for Wronskian entries satisfy a system of combined linear partial differential equations. The key technique is to apply the Wronskian identity of the bilinear KP equation while presenting those sufficient conditions. Other illustrative examples of sufficient conditions are also given for the cKP3-4 equation, the (\(2+1\))-dimensional DJKM equation, and the dissipative (\(2+1\))-dimensional AKNS equation. Finally, N-soliton solutions and soliton molecules are worked out through the presented Wronskian formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included in this published article.

References

  1. Ma, W.X., Yong, X.L., Lü, X.: Soliton solutions to the B-type Kadomtsev–Petviashvili equation under general dispersion relations. Wave Motion 103, 102719 (2021)

    MathSciNet  MATH  Google Scholar 

  2. He, X.J., Lü, X., Li, M.G.: Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (\(3+1\))-dimensional generalized Kadomtsev–Petviashvili equation. Anal. Math. Phys. 11(1), 4 (2021)

    MATH  Google Scholar 

  3. Ma, W.X.: Soliton solutions by means of Hirota bilinear forms. Partial Differ. Equ. Appl. Math. 5, 100220 (2022)

    Google Scholar 

  4. Fan, E.G., Chow, K.W.: Darboux covariant Lax pairs and infinite conservation laws of the (\(2+1\))-dimensional breaking soliton equation. J. Math. Phys. 52(2), 023504 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Hu, X.B., Li, Y.: Bäcklund transformation and nonlinear superposition formula of DJKM equation. Acta Math. Sci. 11(2), 164–172 (1991). (in Chinese)

    MathSciNet  Google Scholar 

  6. Lü, X., Hua, Y.F., Chen, S.J., Tang, X.F.: Integrability characteristics of a novel (\(2+1\))-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws. Commun. Nonlinear Sci. Numer. Simul. 95, 105612 (2021)

    MATH  Google Scholar 

  7. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the (\(3+1\))-dimensional Hirota–Satsuma–Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Lü, X., Ma, W.X., Khalique, C.M.: A direct bilinear Bäcklund transformation of a (\(2+1\))-dimensional Korteweg–de Vries-like model. Appl. Math. Lett. 50, 37–42 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Xia, J.W., Zhao, Y.W., Lü, X.: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 90, 105260 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Ma, W.X., Abdeljabbar, A.: A bilinear Bäcklund transformation of a (\(3+1\))-dimensional generalized KP equation. Appl. Math. Lett. 25, 1500–1504 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Lü, X., Chen, S.J.: New general interaction solutions to the KPI equation via an optional decoupling condition approach. Commun. Nonlinear Sci. Numer. Simul. 103, 105939 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Ismael, H.F., Bulut, H., Osman, M.S.: The \(N\)-soliton, fusion, rational and breather solutions of two extensions of the (\(2+1\))-dimensional Bogoyavlenskii–Schieff equation. Nonlinear Dyn. 107(4), 3791–3803 (2022)

    Google Scholar 

  13. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103(1), 947–977 (2021)

    Google Scholar 

  14. Han, P.F., Bao, T.: Hybrid localized wave solutions for a generalized Calogero–Bogoyavlenskii–Konopelchenko–Schiff system in a fluid or plasma. Nonlinear Dyn. 108(3), 2513–2530 (2022)

    Google Scholar 

  15. Han, P.F., Bao, T.: Novel hybrid-type solutions for the (\(3+1\))-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients. Nonlinear Dyn. 107(1), 1163–1177 (2022)

    Google Scholar 

  16. Ma, W.X.: Integrability. In: Scott, A. (ed.) Encyclopedia of Nonlinear Science, pp. 450–453. Taylor & Francis, New York (2005)

    Google Scholar 

  17. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  18. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  19. Hirota, R.: Direct methods in soliton theory. In: Bullough, R.K., Caudrey, P. (eds.) Solitons, pp. 157–176. Springer, Berlin (1980)

    Google Scholar 

  20. Newell, A.C., Zeng, Y.B.: The Hirota conditions. J. Math. Phys. 27(8), 2016–2021 (1986)

    MathSciNet  MATH  Google Scholar 

  21. Ma, W.X.: \(N\)-soliton solutions and the Hirota conditions in (\(1+1\))-dimensions. Int. J. Nonlinear Sci. Num. 23(1), 123–133 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Ma, W.X.: \(N\)-soliton solutions and the Hirota conditions in (\(2+1\))-dimensions. Opt. Quantum Electron. 52(12), 511 (2020)

    Google Scholar 

  23. Ma, W.X.: \(N\)-soliton solution and the Hirota condition of a (\(2+1\))-dimensional combined equation. Math. Comput. Simul. 190, 270–279 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique. Phys. Lett. A 95(1), 1–3 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the \(N\)-soliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A 95(1), 4–6 (1983)

    MathSciNet  Google Scholar 

  26. Ma, W.X., You, Y.: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 357(5), 1753–1778 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (\(3+1\))-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. 108(2), 1599–1616 (2022)

    Google Scholar 

  28. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15(6), 539–541 (1970)

    MATH  Google Scholar 

  29. Ma, W.X.: The algebraic structures of isospectral Lax operators and applications to integrable equations. J. Phys. A Math. Gen. 25(20), 5329–5343 (1992)

    MathSciNet  MATH  Google Scholar 

  30. Lou, S.Y.: Symmetries of the Kadomtsev–Petviashvili equation. J. Phys. A Math. Gen. 26(17), 4387–4394 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Ma, W.X., Zhang, L.Q.: Lump solutions with higher-order rational dispersion relations. Pramana J. Phys. 94(1), 43 (2020)

    Google Scholar 

  33. Lou, S.Y.: A novel (\(2+1\))-dimensional integrable KdV equation with peculiar solutions structures. China Phys. B 29(8), 080502 (2020)

    Google Scholar 

  34. Xu, G.Q.: Integrability of a (\(2+1\))-dimensional generalized breaking soliton equation. Appl. Math. Lett. 50, 16–22 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Huang, L.L., Chen, Y.: Nonlocal symmetry and similarity reductions for a (\(2+1\))-dimensional Korteweg–de Vries equation. Nonlinear Dyn. 92(2), 221–234 (2018)

    MATH  Google Scholar 

  36. Liu, N., Liu, X.Q.: Application of the binary Bell polynomials method to the dissipative (\(2+1\))-dimensional AKNS equation. Chin. Phys. Lett. 29(12), 120201 (2012)

    Google Scholar 

  37. Wazwaz, A.M.: \(N\)-soliton solutions for shallow water waves equations in (\(1+1\)) and (\(2+1\)) dimensions. Appl. Math. Comput. 217(21), 8840–8845 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Clarkson, P.A., Mansfield, E.L.: On a shallow water wave equation. Nonlinearity 7(3), 975–1000 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Liu, Q., Zhang, W.G.: Exact travelling wave solutions for the dissipative (\(2+1\))-dimensional AKNS equation. Appl. Math. Comput. 217(2), 735–744 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Yong, X.L., Zhang, Z.Y., Chen, Y.F.: Bäcklund transformation, nonlinear superposition formula and solutions of the Calogero equation. Phys. Lett. A 372(41), 6273–6279 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Xu, G.Q., Wazwaz, A.M.: Characteristics of integrability, bidirectional solitons and localized solutions for a (\(3+1\))-dimensional generalized breaking soliton equation. Nonlinear Dyn. 96(3), 1989–2000 (2019)

    MATH  Google Scholar 

  42. Dorrizzi, B., Grammaticos, B., Ramani, A., Winternitz, P.: Are all the equations of the KP hierarchy integrable? J. Math. Phys. 27(12), 2848–2852 (1986)

    MathSciNet  MATH  Google Scholar 

  43. Wu, J.P.: A new Wronskian condition for a (\(3+1\))-dimensional nonlinear evolution equation. Chin. Phys. Lett. 28(5), 050501 (2011)

    Google Scholar 

  44. Sato, M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. RIMS Kokyuroku 439, 30–46 (1981)

    Google Scholar 

  45. Kang, Y.L., Zhang, Y., Jin, L.G.: Soliton solution to BKP equation in Wronskian form. Appl. Math. Comput. 224, 250–258 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Hirota, R.: Reduction of soliton equations in bilinear form. Physica D 18(1–3), 161–170 (1986)

    MathSciNet  MATH  Google Scholar 

  47. Hu, X.B., Li, Y.: A two-parameter Bäcklund transformation and nonlinear superposition formula of DJKM equation. J. Grad. Sch. USTC 6(2), 8–17 (1989). (in Chinese)

    Google Scholar 

  48. Wang, Y.H., Wang, H., Temuer, C.: Lax pair, conservation laws, and multi-shock wave solutions of the DJKM equation with Bell polynomials and symbolic computation. Nonlinear Dyn. 78(2), 1101–1107 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Yuan, Y.Q., Tian, B., Sun, W.R., Chai, J., Liu, L.: Wronskian and Grammian solutions for a (\(2+1\))-dimensional Date–Jimbo–Kashiwara–Miwa equation. Comput. Math. Appl. 74(4), 873–879 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Cheng, L., Zhang, Y., Ma, W.X., Ge, J.Y.: Wronskian and lump wave solutions to an extended second KP equation. Math. Comput. Simul. 187, 720–731 (2021)

    MathSciNet  MATH  Google Scholar 

  51. Chen, D.Y.: Introduction to Solitons. Science Press, Beijing (2006)

  52. Crasovan, L.C., Kartashov, Y.V., Mihalache, D., Torner, L., Kivshar, Y.S., Pérez-García, V.M.: Soliton “molecules”: robust clusters of spatiotemporal optical solitons. Phys. Rev. E 67(4), 046610 (2003)

  53. Liu, X.M., Yao, X.K., Cui, Y.D.: Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121(2), 023905 (2018)

    Google Scholar 

  54. Lou, S.Y.: Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance. J. Phys. Commun. 4(4), 041002 (2020)

    Google Scholar 

  55. Xu, D.H., Lou, S.Y.: Dark soliton molecules in nonlinear optics. Acta Phys. Sin. 69(1), 014208 (2020). ((in Chinese))

    Google Scholar 

  56. Chen, S.T., Ma, W.X.: Lump solutions to a generalized Bogoyavlensky–Konopelchenko equation. Front. Math. China 13(3), 525–534 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Wazwaz, A.M.: Painlevé analysis for Boiti–Leon–Manna–Pempinelli equation of higher dimensions with time-dependent coefficients: multiple soliton solutions. Phys. Lett. A 384(16), 126310 (2020)

    MathSciNet  MATH  Google Scholar 

  58. Wazwaz, A.M.: New (\(3+1\))-dimensional Date–Jimbo–Kashiwara–Miwa equations with constant and time-dependent coefficients: Painlevé integrability. Phys. Lett. A 384(32), 126787 (2020)

  59. Dong, J.J., Li, B., Yuen, M.W.: Soliton molecules and mixed solutions of the (\(2+1\))-dimensional bidirectional Sawada–Kotera equation. Commun. Theor. Phys. 72(2), 025002 (2020)

    MathSciNet  MATH  Google Scholar 

  60. Ma, H.C., Huang, H.Y., Deng, A.P.: Soliton molecules and some interaction solutions for the (\(3+1\))-dimensional Jimbo–Miwa equation. J. Geom. Phys. 170, 104362 (2021)

    MathSciNet  MATH  Google Scholar 

  61. Han, P.F., Bao, T.: Interaction of multiple superposition solutions for the (\(4+1\))-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 105(1), 717–734 (2021)

  62. Han, P.F., Bao, T.: Construction of abundant solutions for two kinds of (\(3+1\))-dimensional equations with time-dependent coefficients. Nonlinear Dyn. 103(2), 1817–1829 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the Referees and Editors for their valuable comments. This work is supported by Jinhua Polytechnic Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province.

Funding

The work was supported in part by NSFC under the grants 12271488, 11975145 and 11972291.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Cheng or Wen-Xiu Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The proof of Lemma 2.1 is as follows:

Proof

By applying the conditions (2.5) and differential rules for determinants as defined in [18], we have the following derivatives of the Wronskian determinant \(f=f_{N}=|\widehat{N-1}|\):

$$\begin{aligned} \frac{\partial f}{\partial y}=(a_1\partial _{x}+a_2\partial _x^2+\dots +a_{m}\partial _x^{m}) {f} \end{aligned}$$
(A.1a)
$$\begin{aligned} \equiv (a_{1}\partial _{x_1}+a_{2}\partial _{x_2}+\dots +a_{m}\partial _{x_m})f , \end{aligned}$$
(A.1b)
$$\begin{aligned} \frac{\partial f}{\partial t}=(b_1\partial _{x}+b_2\partial _x^2+\dots +b_{n}\partial _x^{n}) {f}\end{aligned}$$
(A.1c)
$$\begin{aligned} \equiv (b_{1}\partial _{x_1}+b_{2}\partial _{x_2}+\dots +b_{n}\partial _{x_n})f . \end{aligned}$$
(A.1d)

Let us next suppose that

(A.2)

where \(\delta _{nr}, r=1,2,\ldots ,\mathrm {C_{m+n-1}^{n}},\) are expansion coefficients. Using the definition of D-operators and the above conditions (A.1), we further get

(A.3)

It means that Lemma 2.1 holds.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Zhang, Y. & Ma, WX. Wronskian \(\pmb {N}\)-soliton solutions to a generalized KdV equation in (\(\pmb {2+1}\))-dimensions. Nonlinear Dyn 111, 1701–1714 (2023). https://doi.org/10.1007/s11071-022-07920-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07920-7

Keywords

Navigation