Skip to main content
Log in

Riemann–Hilbert approach and \(N\)-soliton solutions of the two-component Kundu–Eckhaus equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the two-component Kundu–Eckhaus equation with a zero boundary condition at infinity. Based on the spectral analysis of the Lax pair, a Riemann–Hilbert problem is established. An \(N\)-soliton solution is then obtained by solving the regular and nonregular Riemann–Hilbert problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. X.-G. Geng and H.-W. Tam, “Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations,” J. Phys. Soc. Japan, 68, 1508–1512 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  2. X.-G. Geng, “A hierarchy of non-linear evolution equations its Hamiltonian structure and classical integrable system,” Phys. A, 180, 241–251 (1992).

    Article  MathSciNet  Google Scholar 

  3. Y. Kodama, “Optical solitons in a monomode fiber,” J. Statist. Phys., 39, 597–614 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations,” J. Math. Phys., 25, 3433–3438 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  5. G. Tu, “Liouville integrability of zero curvature equations,” in: Nonlinear Physics (Proceedings of the International Conference, Shanghai, China, April 24 – 30, 1989, Research Reports in Physics, C. Gu, Y. Li, and G. Tu, eds.), Springer, Berlin (1990), pp. 2–11.

    Chapter  Google Scholar 

  6. D.-S. Wang and X. Wang, “Long-time asymptotics and the bright \(N\)-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach,” Nonlinear Anal. Real World Appl., 41, 334–361 (2018).

    Article  MathSciNet  Google Scholar 

  7. L.-L. Wen and E.-G. Fan, “The Riemann–Hilbert approach to focusing Kundu–Eckhaus equation with non-zero boundary conditions,” Modern Phys. Lett. B, 34, 2050332, 20 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  8. C.-H. Gu, H.-S. Hu, and Z.-X. Zhou, Darboux Transformations in Integrable Systems. Theory and their Applications to Geometry, (Mathematical Physics Studies, Vol. 26), Springer, New York (2005).

    MATH  Google Scholar 

  9. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, (Springer Series in Nonlinear Dynamics, Vol. 5), Springer, Berlin (1991).

    Book  Google Scholar 

  10. V. F. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet Phys. JETP, 34, 62–69 (1972).

    ADS  MathSciNet  Google Scholar 

  11. K. Kawata, “Riemann spectral mathod for the nonlinear evolution equation,” in: Advances in Nonlinear Waves, Vol. 1 (L. Debnath, ed.), Pitman, Boston, MA (1984), pp. 210–225.

    Google Scholar 

  12. S. P. Novikov, S. V. Manakov, L. P. Pitaevski and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Plenum, New York (1984).

    Google Scholar 

  13. J.-P. Wu and X.-G. Geng, “Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation,” Commun. Nonlinear Sci. Numer. Simul., 53, 83–93 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  14. D.-S. Wang, D.-J. Zhang, and J. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations,” J. Math. Phys., 51, 023510, 17 pp. (2010).

    Article  ADS  MathSciNet  Google Scholar 

  15. J. K. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, (Mathematical Modeling and Computation, Vol. 16), SIAM, Philadelphia, PA (2010).

    Book  Google Scholar 

  16. G. Biondini and G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions,” J. Math. Phys., 55, 031506, 22 pp. (2014).

    Article  ADS  MathSciNet  Google Scholar 

  17. L.-L. Wen, N. Zhang, and E.-G. Fan, “\(N\)-soliton solution of the Kundu-type equation via Riemann– Hilbert approach,” Acta Math. Sci., 40, 113–126 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (grant No. 11871138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 212, pp. 386–402 https://doi.org/10.4213/tmf10171.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, J. Riemann–Hilbert approach and \(N\)-soliton solutions of the two-component Kundu–Eckhaus equation. Theor Math Phys 212, 1222–1236 (2022). https://doi.org/10.1134/S0040577922090057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922090057

Keywords

Navigation