Skip to main content
Log in

Insight into flow pattern evolution of vertical oil–water flows with large-diameter pipe

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A profound revelation about the nonlinearity of the oil–water flow structure evolution is crucial for the prediction of well production profile parameters. In this paper, we propose a nonlinear analysis method which is refined composite multivariate multiscale fractional weighted permutation entropy (RCmvMFWPE) to analyze the flow pattern evolution of vertical oil–water flows with large-diameter pipe. We begin by describing the algorithm's calculating procedure, and the RCmvMFWPE is employed to analyze the multivariate time series of vertical multielectrode array conductance sensor which contains the local and global flow pattern information of oil–water flows in a vertical upward 125 mm inner-diameter pipe. The results demonstrate that the entropy of each flow pattern behaves with different characteristics. It indicates that the RCmvMFWPE is sensitive to the evolution of flow pattern, thus allowing the detection of the instability of flow pattern transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ismail, A.S.I., Ismail, I., Zoveidavianpoor, M., Mohsin, R., Piroozian, A., Misnan, M.S., Sariman, M.Z.: Review of oil-water through pipes. Flow Meas. Instrum. 45, 357–374 (2015)

    Article  Google Scholar 

  2. Flores, J.G., Chen, X.T., Sarica, C., et al.: Characterization of oil-water flow patterns in vertical and deviated wells. SPE Prod. Facil. 14, 94–101 (1999)

    Article  Google Scholar 

  3. Hu, B., Matar, O.K., Hewitt, G.F., Angeli, P.: Mean and turbulent fluctuating velocities in oil-water vertical dispersed flows. Chem. Eng. Sci. 62, 1199–1214 (2007)

    Article  Google Scholar 

  4. Xu, J.Y., Li, D.H., Guo, J., Wu, Y.X.: Investigations of phase inversion and frictional pressure gradients in upward and downward oil-water flow in vertical pipes. Int. J. Multiphas. Flow 36, 930–939 (2010)

    Article  Google Scholar 

  5. Zhang, X., Sun, J., Hu, J., et al.: A modified adaptive cross correlation method for flow rate measurement of high-water-cut oil-water flow using planar flowmeter. IEEE Trans. Instrum. Meas. 71, 9500210 (2022)

    Google Scholar 

  6. Vigneaux, P., Chenais, P., Hulin, J.P.: Liquid-liquid flows in an inclined pipe. AIChE J. 34, 781–789 (1988)

    Article  Google Scholar 

  7. Jin, N.D., Nie, X.B., Wang, J., Ren, Y.Y.: Flow pattern identification of oil/water two-phase flow based on kinematic wave theory. Flow Meas. Instrum. 14, 177–182 (2003)

    Article  Google Scholar 

  8. Xu, L.J., Chen, J.J., Cao, Z., Zhang, W., Xie, R.H., Liu, X.B., Hu, J.H.: Identification of oil-water flow patterns in a vertical well using a dual-ring conductance probe array. IEEE Trans. Instrum. Meas. 65, 1249–1258 (2016)

    Article  Google Scholar 

  9. Elnaqeeb, T., Animasaun, I.L., Shah, N.A.: Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities. Z. Naturforsch. A 76, 231–243 (2021)

    Article  Google Scholar 

  10. Animasaun, I.L., Yook, S.J., Muhammad, T., Mathew, A.: Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface. Surf. Interfaces 28, 101654 (2021)

    Article  Google Scholar 

  11. Saleem, S., Animasaun, I.L., Yook, S.J., Al-Mdallal, Q.M., Shah, N.A., Faisal, M.: Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: significance of thermo-migration and Brownian motion. Surf. Interfaces 30, 101854 (2022)

    Article  Google Scholar 

  12. Cao, W.H., Animasaun, I.L., Yook, S.J., Oladipupo, V.A., Ji, X.J.: Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: ternary-hybrid nanofluid. Int. J. Heat Mass Transf. 135, 106069 (2022)

    Article  Google Scholar 

  13. Jones, J., Zuber, N.: The interrelation between void fraction fluctuation and flow pattern in two-phase flow. Int. J. Multiphas. Flow 2, 273–306 (1975)

    Article  Google Scholar 

  14. Bai, L.D., Jin, N.D., Chen, X., et al.: A distributed conductance cross-correlation method for measuring low-velocity and high water-cut oil-water flows. IEEE Sens. J. 21(21), 23860–23871 (2021)

    Article  Google Scholar 

  15. Johnsson, F., Zijerveld, R.C., Schouten, J.C., Bleek, C.M.V.D., Leckner, B.: Characterization of fluidization regimes by time-series analysis of pressure fluctuations. Int. J. Multiphas. Flow 26, 663–715 (2000)

    Article  MATH  Google Scholar 

  16. Ommen, J.R.V., Sasic, S., Schaaf, J.V.D., Gheorghiu, S., Johnsson, F., Coppens, M.O.: Time-series analysis of pressure fluctuations in gas-solid fluidized beds—a review. Int. J. Multiphas. Flow 37, 403–428 (2011)

    Article  Google Scholar 

  17. Hubbard, M.G., Dukler, A.E.: The characterization of flow regimes for horizontal two-phase flow. Proc. Heat Trans. Fluid Mech. Inst. 1996, 100–121 (1966)

    Google Scholar 

  18. Albrecht, R.W., Crowe, R.D., Dailey, D.J., Damborg, M.J., Kosály, G.: Measurement of two-phase flow properties using the nuclear reactor instrument. Prog. Nucl. Energy 9, 37–50 (1982)

    Article  Google Scholar 

  19. Zong, Y.B., Jin, N.D., Wang, Z.Y., Gao, Z.K., Wang, C.: Nonlinear dynamic analysis of large diameter inclined oil–water two phase flow pattern. Int. J. Multiphas. Flow 36, 166–183 (2010)

    Article  Google Scholar 

  20. Nijenhuis, J., Korbee, R., Lensselink, J., Kiel, J.H.A., Ommen, J.R.V.: A method for agglomeration detection and control in full-scale biomass fired fluidized beds. Chem. Eng. Sci. 62, 644–654 (2007)

    Article  Google Scholar 

  21. Han, Y.F., Ren, Y.Y., He, Y.S., Jin, N.D.: Variability analysis of droplet distribution of oil-in-water emulsions with a multi-scale first-order difference conductance series. Physica A 505, 196–210 (2018)

    Article  MATH  Google Scholar 

  22. Galletti, C., Brunazzi, E., Yianneskis, M., Paglianti, A.: Spectal and wavelet analysis of the flow pattern transition with impeller clearance variations in a stirred vessel. Chem. Eng. Sci. 58, 3859–3875 (2003)

    Article  Google Scholar 

  23. Wang, X.Q., So, R.M.C., Xie, W.C.: Features of flow-induced forces deduced from wavelet analysis. J. Fluid. Struct. 23, 249–268 (2007)

    Article  Google Scholar 

  24. Rahmanifard, H., Plaksina, T.: Application of artificial intelligence techniques in the petroleum industry: a review. Artif. Intell. Rev. 52, 2295–2318 (2019)

    Article  Google Scholar 

  25. Zhu, L., Ouyang, B., Zhang, X., Luo, Z.: Progress on application of machine learning to multiphase reactors. Chem. Eng. Prog. 40, 1699–1714 (2021)

    Google Scholar 

  26. Yu, H., Zhang, Z.X., Gao, Y., Jia, J.B.: Multiscale voltage reconstruction with attention-based network for volume fraction prediction of industrial oil–water two-phase flow by EIT. IEEE Trans. Instrum. Meas. 71, 453409 (2022)

    Article  Google Scholar 

  27. Fadlallah, B., Chen, B.: Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Phys. Rev. E 87, 022911 (2013)

    Article  Google Scholar 

  28. Wang, D.Y., Jin, N.D.: Multivariate multiscale increment entropy: a complexity measure for detecting flow pattern transition in multiphase flows. Nonlinear Dyn. 100, 3853–3865 (2020)

    Article  Google Scholar 

  29. Ren, W.K., Zhang, J.C., Jin, N.D.: Rescaled range permutation entropy: a method for quantifying the dynamical complexity of gas–liquid two-phase slug flow. Nonlinear Dyn. 104(1), 4035–4043 (2021)

    Article  Google Scholar 

  30. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002)

    Article  Google Scholar 

  31. Xia, J., Shang, P., Wang, J., Shi, W.: Permutation and weighted-permutation entropy analysis for the complexity of nonlinear time series. Commun. Nonlinear Sci. Numer. Simul. 31(1–3), 60–68 (2016)

    Article  MATH  Google Scholar 

  32. Han, Y.F., Jin, N.D., Zhai, L.S., Ren, Y.Y., He, Y.S.: An investigation of oil-water two-phase flow instability using multivariate multi-scale weighted permutation entropy. Physica A 518, 131–144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Costa, M., Goldberger, A.L., Peng, C.K.: Multi-scale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102 (2002)

    Article  Google Scholar 

  34. Valerio, D., Trujillo, J.J.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827–1846 (2013)

    Article  Google Scholar 

  35. Machado, J.T.: Fractional order generalized information. Entropy 16, 2350–2361 (2014)

    Article  Google Scholar 

  36. Wu, S.D., Wu, C.W., Lin, S.G., Lee, K.Y., Peng, C.K.: Analysis of complex time series using refined composite multiscale entropy. Phys. Lett. A 378, 1369–1374 (2014)

    Article  MATH  Google Scholar 

  37. Azami, H., Escudero, J.: Refined composite multivariate generalized multiscale fuzzy entropy: a tool for complexity analysis of multichannel signals. Physica A 465, 261–276 (2016)

    Article  Google Scholar 

  38. Ren, W.K., Jin, N.D.: Nonlinear interaction underlying flow structure transition of inclined oil–water two-phase countercurrent flow. Eur. Phys. J. Plus 136, 560 (2021)

    Article  Google Scholar 

  39. Jin, N.D., Zhao, X., Wang, J., Wang, Z.Y., Jia, X.H., Chen, W.P.: Design and geometry optimization of a conductive probe with a vertical multiple electrode array for measuring volume fraction and axial velocity of two-phase flow. Meas. Sci. Technol. 19, 045403 (2008)

    Article  Google Scholar 

  40. Wolf, A.: Quantifying chaos with Lyapunov exponents. 1986. In: Holden, A.V. (ed.) Chaos, pp. 270–290. Princeton University Press, New Jersey (1986)

    Google Scholar 

  41. Annunziato, M., Abarbanel, H.D.I.: Nonlinear dynamics for classification of multiphase flow regimes. In: Proceedings of the International Conference on Soft Computer Genova, Italy (1999)

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 42074142, 51527805).

Funding

Funding was provided by the National Natural Science Foundation of China (42074142, 51527805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weikai Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

Data will be made available on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Appendix

Appendix

See Tables 3, 4 and 5.

Table 3 MFWPE of oil–water flows (Qw = 0.83 /h)
Table 4 mvMFWPE of oil–water flows (Qw = 0.83 m3/h)
Table 5 RCmvMFWPE of oil–water flows (Qw = 0.83 m3/h)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Jin, N., Ren, W. et al. Insight into flow pattern evolution of vertical oil–water flows with large-diameter pipe. Nonlinear Dyn 110, 2317–2331 (2022). https://doi.org/10.1007/s11071-022-07732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07732-9

Keywords

Navigation