Skip to main content
Log in

Detecting the fluid flow transitions in oil–gas–water three-phase flows using multivariate rescaled range permutation entropy analysis

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Disclosing the nonlinear flow structure of oil–gas–water three-phase flows has always been a challenging problem. Rescaled range permutation entropy is recently introduced as a new method to measure the complexity of chaotic sequences with extreme mutation. However, the combination of multiscale method and rescaled range permutation entropy in previous work is unreliable because multiscale method shows significant fluctuation on different lengths of time series and especially on high time scales. Therefore, we propose the refined composite rescaled range permutation entropy to analyze the nonlinear flow structure of oil–gas–water three-phase flows. A multi-channel rotating electric field conductance sensors signals are utilized to capture detailed flow structure information in 20-mm inner diameter pipe from different positions of pipe cross section. Then, we discussed a practical application of the refined composite rescaled range permutation entropy in experimental signals analysis of oil–gas–water three-phase flows in detail. The results show that the refined composite rescaled range permutation entropy has a significant discernibility and representational capacity on quantifying the complexity of oil–gas–water three-phase flows under different conditions. Proving that the combination of the rescaled range permutation entropy and the refined composite coarse-grain method can fully and stably represent the complexity of a class of engineering signals, especially with extreme volatility. On this basis, we first extract the normalized mean value on the whole scale and the normalized difference between the intercept on the high-scale and low-scale fitting curves of the refined composite rescaled range permutation entropy to form the joint plot to analyze the nonlinear flow structure. The results show that the analysis is sensitive and robust to the change of the multivariate signals of the internal dynamic flow structure. This study provides a novel method to be employed to characterize and to classify the complexity of the internal flow structure of oil–gas–water three-phase flows under different working conditions. And it can be applied to quantifying the complexity of a series of fluctuating signals to varying degrees, even some abrupt changes in some complicate systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statements

The datasets generated and analyzed during the current study will be available from the corresponding author on reasonable request.

References

  1. M. Açikgöz, F. França, R.T. Lahey Jr., Int. J. Multiphase Flow 18, 327 (1992)

    Article  Google Scholar 

  2. C.S. Cheng, D. Shirmohammadi, IEEE T. Power Syst. 10, 671 (1995)

    Article  Google Scholar 

  3. G.S. Woods, P.L. Spedding, J.K. Watterson, R.S. Raghunathan, Trans IChemE 76, 571 (1998)

    Article  Google Scholar 

  4. S. Wang, H.Q. Zhang, C. Sarica, E. Pereyra, Spe. Prod. Oper. 28, 306 (2012)

    Google Scholar 

  5. Z.K. Gao, N.D. Jin, Chem. Eng. Sci. 66, 2660 (2011)

    Article  Google Scholar 

  6. J.Y. Zhao, N.D. Jin, Z.K. Gao, M. Du, Z.Y. Wang, Chin. Phys. B 23, 034702 (2014)

    Article  ADS  Google Scholar 

  7. A. Zhao, N.D. Jin, Y.Y. Ren, L. Zhu, X.Z. Yang, Z. Naturforsch. A 71, 33 (2016)

    Article  Google Scholar 

  8. S.M. Pincus, A.L. Goldberger, Am. J. Physiol-Heart C 266, 1643 (1994)

    Article  Google Scholar 

  9. H. Yang, S. Amari, Neural Comput. 9, 1457 (1997)

    Article  Google Scholar 

  10. E. Pereda, R.Q. Quiroga, J. Bhattacharya, Prog. Neurobiol. 77, 1 (2005)

    Article  Google Scholar 

  11. C.J. Stam, Clin. Neurophysiol. 116, 2266 (2005)

    Article  Google Scholar 

  12. C. Gómez, R. Hornero, D. Abásolo, A. Fernández, J. Escudero, Ann. Biomed. Eng. 37, 586 (2009)

    Article  Google Scholar 

  13. S. He, K. Sun, S. Banerjee, Eur. Phys. J. Plus 131, 254 (2016)

    Article  Google Scholar 

  14. N. Cabo Bizet, O. Obregón, Eur. Phys. J. Plus 133, 55 (2018)

    Article  Google Scholar 

  15. J.S. Richman, J.R. Moorman, Am. J. Physiol-Heart C 278, H2039 (2000)

    Article  Google Scholar 

  16. M. Costa, A.L. Goldberger, C.K. Peng, Phys. Rev. Lett. 89, 068102 (2002)

    Article  ADS  Google Scholar 

  17. H. Azami, J. Escudero, Physica A 465, 261 (2017)

    Article  ADS  Google Scholar 

  18. C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)

    Article  ADS  Google Scholar 

  19. Y. Cao, W.W. Tung, J.B. Gao, V.A. Protopopescu, L.M. Hively, Phys. Rev. E 70, 046217 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Zanin, L. Zunino, O.A. Rosso, D. Papo, Entropy 14, 1553 (2012)

    Article  ADS  Google Scholar 

  21. X. Li, G. Ouyang, D.A. Richards, Epilepsy Res. 77, 70 (2007)

    Article  Google Scholar 

  22. L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso, Physica A 389, 1891 (2009)

    Article  ADS  Google Scholar 

  23. B. Fadlalah, B.D. Chen, A. Keil, J. Príncipe, Phys. Rev. E 87, 022911 (2013)

    Article  ADS  Google Scholar 

  24. Y. Yin, P.J. Shang, Nonlinear Dyn. 88, 1707 (2017)

    Article  Google Scholar 

  25. Y.D. Liu, D.Y. Wang, Y.Y. Ren, N.D. Jin, Z. Naturforsch. A 74, 837 (2019)

    Article  ADS  Google Scholar 

  26. J.C. Zhang, W.K. Ren, N.D. Jin, Chin. Phys. Lett. 37, 090501 (2020)

    Article  ADS  Google Scholar 

  27. W.K. Ren, J.C. Zhang, N.D. Jin, Nonlinear Dyn. 104, 4035 (2021)

    Article  Google Scholar 

  28. Y.P. Zhang, P.J. Shang, Physica A 496, 189 (2018)

    Article  ADS  Google Scholar 

  29. D.Y. Wang, N.D. Jin, L.X. Zhuang, L.S. Zhai, Y.Y. Ren, Meas. Dci. Technol. 29, 075301 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Grant Nos. 42074142, 51527805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weikai Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jin, N. & Ren, W. Detecting the fluid flow transitions in oil–gas–water three-phase flows using multivariate rescaled range permutation entropy analysis. Eur. Phys. J. Plus 137, 808 (2022). https://doi.org/10.1140/epjp/s13360-022-03026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03026-6

Navigation