Skip to main content
Log in

Solitary wave characteristics in nonlinear dispersive media: a conformable fractional derivative approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel class of traveling wave solutions for the Hirota–Schrödinger (HS) equation and the nonlinear Schrödinger equation (NLSE) with quadratic–cubic nonlinearity (QCN) has been obtained using conformable fractional space and time derivatives. The obtained solutions show interesting dispersive corrections to the propagating waves. Different fractional powers show phase shifting, singularity and a flattening of the propagating pulse. The bright one-soliton and singular soliton solutions for the NLSE with QCN have also been discussed. The present findings are likely to have significant relevance in the propagation of optical pulses in a highly nonlinear dispersive media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Samko, S., Kilbas, A.A., Marichev, O.: Fractional Integrals and Derivatives. CRC Press, Boca Raton (1993).. (ISBN 978-2881248641)

    MATH  Google Scholar 

  2. Phuong, N.D., Tuan, N.A., Kumar, D., Tuan, N.H.: Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations. Math. Model. Nat. Phenom. 16, 27 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Majeed, A., Kamran, M., Abbas, M., Singh, J.: An efficient numerical technique for solving time-fractional generalized Fisher’s equation. Front. Phys. 8, 293 (2020)

    Article  Google Scholar 

  4. Khader, M.M., Saad, K.M., Hammouch, Z., Baleanu, D.: A spectral collocation method for solving fractional KdV and KdV–Burgers equations with non-singular kernel derivatives. Appl. Numer. Math. 161, 137 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akgül, A.: A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 114, 478 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Darvishi, M.T., Najafi, M., Wazwaz, A.-M.: Some optical soliton solutions of space-time conformable fractional Schrödinger-type models. Phys. Scr. 96(6), 065213 (2021)

    Article  Google Scholar 

  7. Darvishi, M.T., Najafi, M., Wazwaz, A.-M.: Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions. Chaos Solitons Fractals 150, 111187 (2021)

    Article  MATH  Google Scholar 

  8. Saleh, R., Mabrouk, S.M., Wazwaz, A.M.: The singular manifold method for a class of fractional-order diffusion equations. Waves Random Complex Media (2022)

  9. Fengyu, Z., Yugang, W.: Iterative learning control for fractional order nonlinear system with initial shift. Nonlinear Dyn. 106, 3305 (2019)

    Article  Google Scholar 

  10. Abdelhakim, A.A., Machado, J.A.T.: A critical analysis of the conformable derivative. Nonlinear Dyn. 95, 3063 (2019)

    Article  MATH  Google Scholar 

  11. Tariq, H., Akram, G.: New traveling wave exact and approximate solutions for the nonlinear Cahn–Allen equation: evolution of a nonconserved quantity. Nonlinear Dyn. 88, 581 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, H., Sun, K., He, S.: A fractional-order ship power system with extreme multistability. Nonlinear Dyn. 106, 1027 (2021)

    Article  Google Scholar 

  13. Zhang, Z.-Y., Lin, Z.-X., Guo, L.-L.: Variable-order fractional derivative under Hadamard’s finite-part integral: Leibniz-type rule and its applications. Nonlinear Dyn. 108, 1641 (2022)

    Article  Google Scholar 

  14. Hosseini, V.R., Zou, W.: The peridynamic differential operator for solving time-fractional partial differential equations. Nonlinear Dyn. (2022)

  15. San, S., Yaşar, E.: On the Lie symmetry analysis, analytic series solutions, and conservation laws of the time fractional Belousov–Zhabotinskii system. Nonlinear Dyn. (2022)

  16. San, S.: Invariant analysis of nonlinear time fractional Qiao equation. Nonlinear Dyn. 85, 2127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. San, S.: Lie symmetry analysis and conservation laws of non linear time fractional WKI equation. Celal Bayar Univ. J. Sci. 13(1), 55 (2017)

    Google Scholar 

  18. Yavuz, M., Sulaiman, T.A., Yusuf, A., Abdeljawad, T.: The Schrödinger–KdV equation of fractional order with Mittag–Leffler nonsingular kernel. Alex. Eng. J. 60(2), 2715 (2021)

    Article  Google Scholar 

  19. Liu, J.-G., Yang, X.-J., Geng, L.-L., Fan, Y.-R.: Group analysis of the time fractional (3+1)-dimensional KdV-type equation. Fractals 29(6), 2150169 (2021)

    Article  MATH  Google Scholar 

  20. Liu, J.G., Yang, X.J., Feng, Y.Y., Cui, P., Geng, L.L.: On integrability of the higher dimensional time fractional KdV-type equation. J. Geom. Phys. 160, 104000 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jafari, H., Kadkhoda, N., Azadi, M., Yaghobi, M.: Group classification of the time-fractional Kaup–Kupershmidt equation. Sci. Iran. B 24(1), 302 (2017)

    Google Scholar 

  22. Hosseini, K., Mayeli, P., Bekir, A., Guner, O.: Density-dependent conformable space-time fractional diffusion-reaction equation and its exact solutions. Commun. Theor. Phys. 69(1), 1 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Akgül, A., Khoshnaw, S.H.A.: Application of fractional derivative on non-linear biochemical reaction models. Int. J. Intell. Netw. 1, 52 (2020)

    Google Scholar 

  24. Seadway, A.R.: Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: part I. Comput. Math. Appl. 70(4), 345 (2015)

    Article  MathSciNet  Google Scholar 

  25. Babaei, A., Jafari, H., Ahmadi, M.: A fractional order HIV/AIDS model based on the effect of screening of unaware infectives. Math. Method. Appl. Sci. 42(7), 2334 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Abdelrahman, M.A.E., Hassan, S.Z., Alomair, R.A., Alsaleh, D.M.: The new wave structures to the fractional ion sound and Langmuir waves equation in plasma physics. Fractal Fract. 6, 227 (2022)

    Article  Google Scholar 

  27. Sing, J.: Analysis of fractional blood alcohol model with composite fractional derivative. Chaos Solitons Fractals 140, 110127 (2020)

    Article  MathSciNet  Google Scholar 

  28. Singh, J., Kumar, D., Purohit, S., Mani, A.: An efficient numerical approach for fractional multidimensional diffusion equations with exponential memory. Numer. Methods Partial Differ. Equ. 37(2), 1631 (2021)

    Article  MathSciNet  Google Scholar 

  29. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, Cambridge (1974)

    MATH  Google Scholar 

  30. Miller, K.S.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley and Sons, New York (1993)

    MATH  Google Scholar 

  31. Wheeler, N.: Construction & physical application of the fractional calculus, Reed College Physics Department (1997). Preprint at https://www.reed.edu/physics/faculty/wheeler/documents/Miscellaneous%20Math/Fractional%20Calculus/A.%20Fractional%20Calculus.pdf

  32. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations: Volume 204 (North-Holland Mathematics Studies). Elsevier, New York (2006)

    Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  34. Lizorkin, P.I.: Fractional Integration and Differentiation. Encyclopedia of Mathematics. EMS Press, Berlin (1994).. (ISBN 1402006098)

    Google Scholar 

  35. Liouville, J.: Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. Journal de l’École Polytechnique, Paris 13, 1–69 (1832)

    Google Scholar 

  36. Liouville, J.: Mémoire sur le calcul des différentielles à indices quelconques. Journal de l’École Polytechnique, Paris 13, 71–162 (1832)

    Google Scholar 

  37. Nieto, J.J.: Solution of a fractional logistic ordinary differential equation. Appl. Math. Lett. 123, 107568 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  38. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  39. Caputo, M., Fabrizio, M.: On the singular kernels for fractional derivatives. Some applications to partial differential equations. Prog. Fract. Differ. Appl. 7, 79 (2021)

    Article  Google Scholar 

  40. Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gao, F., Chi, C.: Improvement on conformable fractional derivative and its applications in fractional differential equations. J. Funct. Spaces 2020, 1–10 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Solís-Pérez, J.E., Hernández, J.A., Parrales, A., Gómez-Aguilar, J.F., Huicocheab, A.: Artificial neural networks with conformable transfer function for improving the performance in thermal and environmental processes. Neural Netw. 152, 44 (2022)

    Article  Google Scholar 

  43. Kaviya, R., Priyanka, M., Muthukumar, P.: Mean-square exponential stability of impulsive conformable fractional stochastic differential system with application on epidemic model. Chaos Solitons Fractals 160, 112070 (2022)

    Article  MathSciNet  Google Scholar 

  44. Arqub, O.A., Al-Smadi, M., Almusawa, H., Baleanu, D., Hayat, T., Alhodaly, M., Osman, M.S.: A novel analytical algorithm for generalized fifth-order time-fractional nonlinear evolution equations with conformable time derivative arising in shallow water waves. Alex. Eng. J. 61(7), 5753 (2022)

    Article  Google Scholar 

  45. Yokus, A., Durur, H., Duran, S., Islam, M.T.: Ample felicitous wave structures for fractional foam drainage equation modeling for fluid-flow mechanism. Comput. Appl. Math. 41, 174 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  46. Garai, S., Ghose-Choudhury, A., Dan, J.: On the solution of certain higher-order local and nonlocal nonlinear equations in optical fibers using Kudryashov’s approach. Optik 222, 165312 (2020)

    Article  Google Scholar 

  47. Dan, J., Sain, S., Ghose-Choudhury, A., Garai, S.: Application of the Kudryashov function for finding solitary wave solutions of NLS type differential equations. Optik 224, 165519 (2020)

    Article  Google Scholar 

  48. Dan, J., Ghose-Choudhury, A., Garai, S.: Variable coefficient higher-order nonlinear Schrödinger type equations and their solutions. Optik 242, 167195 (2021)

    Article  Google Scholar 

  49. Akinyemi, L., Mirzazadeh, M., Hosseini, K.: Solitons and other solutions of perturbed nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index. Nonlinear Anal.: Model. Control 27(3), 479 (2022)

    MathSciNet  MATH  Google Scholar 

  50. Hosseini, K., Mirzazadeh, M., Baleanu, D., Salahshour, S., Akinyemi, L.: Optical solitons of a high-order nonlinear Schrödinger equation involving nonlinear dispersions and Kerr effect. Opt. Quant. Electron. 54, 177 (2022)

    Article  Google Scholar 

  51. Yaoa, S.-W., Akinyemi, L., Mirzazadeh, M., Inc, M., Hosseini, K., Şenol, M.: Dynamics of optical solitons in higher-order Sasa–Satsuma equation. Results Phys. 30, 104825 (2021)

    Article  Google Scholar 

  52. Dan, J., Sain, S., Ghose-Choudhury, A., Garai, S.: Solitary wave solutions of nonlinear PDEs using Kudryashov’s R function method. J. Mod. Opt. 67(19), 1499 (2021)

    Article  MathSciNet  Google Scholar 

  53. San, S., Altunay, R.: Abundant travelling wave solutions of 3+1 dimensional Boussinesq equation with dual dispersion. Rev. Mex. Fis. E 19(2), 1–12 (2022)

    Google Scholar 

  54. Bekir, A., Cevikel, A.C., Güner, Ö., San, S.: Bright and dark soliton solutions of the (2+1)-dimensional evolution equations. Math. Model. Anal. 19(1), 118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sain, S., Ghose-Choudhury, A., Garai, S.: Solitary wave solutions for the KdV-type equations in plasma: a new approach with the Kudryashov function. Eur. Phys. J. Plus 136, 226 (2021)

    Article  Google Scholar 

  56. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2020)

    Article  MathSciNet  Google Scholar 

  57. Qarni, A.A.A., Alshaery, A.A., Bakodah, H.O., Gómez-Aguilar, J.F.: Novel dynamical solitons for the evolution of Schrödinger–Hirota equation in optical fibres. Opt. Quant. Electron. 53, 151 (2021)

    Article  Google Scholar 

  58. Rezazadeh, H., Kumar, D., Sulaiman, T.A., Bulut, H.: New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation. Mod. Phys. Lett. B 33(17), 1950196 (2019)

  59. Kudryashov, N.A.: A note on the \(G^{\prime }/G\)-expansion method. Appl. Math. Comput. 217(4), 1755 (2010)

    MathSciNet  MATH  Google Scholar 

  60. Zhang, J., Wei, X., Lu, Y.: A generalized \(G^{\prime }/G\)-expansion method and its applications. Phys. Lett. A 3653, 1755 (2008)

    MathSciNet  Google Scholar 

  61. Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 24, 1217 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. Kudryashov, N.A., Loguinova, N.B.: Extended simplest equation method for nonlinear differential equations. Appl. Math. Comput. 205(1), 396 (2008)

    MathSciNet  MATH  Google Scholar 

  63. Fujioka, J., Cortés, E., Pérez-Pascual, R., Rodríguez, R.F., Espinosa, A., Malomed, B.A.: Chaotic solitons in the quadratic-cubic nonlinear Schrödinger equation under nonlinearity management. Chaos 21, 033120 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Biswas, A., Ullah, M.Z., Asma, M., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik 139, 16 (2017)

    Article  Google Scholar 

  65. Li, X.-W., Li, Y., He, J.-H.: On the semi-inverse method and variational principle. Therm. Sci. 17(5), 1565 (2013)

    Article  Google Scholar 

  66. Triki, H., Biswas, A., Moshokoa, S.P., Belic, M.: Optical solitons and conservation laws with quadratic-cubic nonlinearity. Optik 128, 63 (2017)

    Article  Google Scholar 

  67. Zheng, C.B., Liu, B., Wang, Z.-J., Zheng, S.-K.: Generalized variational principle for electromagnetic field with magnetic monopoles by He’s semi-inverse method. Int. J. Nonlinear Sci. Numer. Simul. 10, 1369 (2009)

    Google Scholar 

  68. Biswas, A., Ullah, M.Z., Zhou, Q., Moshokoa, S.P., Triki, H., Belic, M.: Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik 145, 18 (2017)

    Article  Google Scholar 

  69. Aslan, E.C., Inc, M.: Soliton solutions of NLSE with quadratic-cubic nonlinearity and stability analysis. Waves Random Complex Media 27(4), 594 (2017)

    Article  MathSciNet  Google Scholar 

  70. Kudryashov, N.A.: Almost general solution of the reduced higher-order nonlinear Schrödinger equation. Optik 230, 166347 (2021)

    Article  Google Scholar 

  71. Ghose-Choudhury, A., Garai, S.: On the construction of the general solution of the Fokas–Lenells equation. Ex. Counterexamples 1, 100041 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their constructive comments which have led to an improvement of the manuscript.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have made significant and equal contributions toward this work.

Corresponding author

Correspondence to Sudip Garai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shreya Mitra, Sujoy Poddar, A. Ghose-Choudhury, Sudip Garai have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, S., Poddar, S., Ghose-Choudhury, A. et al. Solitary wave characteristics in nonlinear dispersive media: a conformable fractional derivative approach. Nonlinear Dyn 110, 1777–1788 (2022). https://doi.org/10.1007/s11071-022-07719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07719-6

Keywords

Mathematics Subject Classification

Navigation