Skip to main content
Log in

A critical analysis of the conformable derivative

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We prove that conformable “fractional” differentiability of a function \(f:[0,\infty [\,\longrightarrow \mathbb {R}\) is nothing else than the classical differentiability. More precisely, the conformable \(\alpha \)-derivative of f at some point \(x>0\), where \(0<\alpha <1\), is the pointwise product \(x^{1-\alpha }f^{\prime }(x)\). This proves the lack of significance of recent studies of the conformable derivatives. The results imply that interpreting fractional derivatives in the conformable sense alters fractional differential problems into differential problems with the usual integer-order derivatives that may no longer properly describe the original fractional physical phenomena. A general fractional viscoelasticity model is analysed to illustrate this state of affairs. We also test the modelling efficiency of the conformable derivative on various fractional models. We find that, compared with the classical fractional derivative, the conformable framework results in a substantially larger error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida, R., Bastos, N.R.O., Teresa, M.: Modeling some real phenomena by fractional differential equations. Math. Methods Appl. Sci. 39(16), 4846–4855 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida, R.: What is the best fractional derivative to fit data? Appl. Anal. Discrete Math. 11(2), 358–368 (2017)

    Article  MathSciNet  Google Scholar 

  4. Anderson, D.R., Ulness, D.J.: Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56, 6 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)

    Article  MATH  Google Scholar 

  6. Bayour, B., Torres, D.F.M.: Existence of solution to a local fractional nonlinear differential equation. J. Comput. Appl. Math 312, 127–133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(8), 134–147 (1971)

    Article  MATH  Google Scholar 

  8. Chen, C., Jiang, Y.-L.: Simplest equation method for some time-fractional partial differential equations with conformable derivative. Comput. Math. Appl. 75(8), 2978–2988 (2018)

    Article  MathSciNet  Google Scholar 

  9. de Oliveira, E.C., Machado, J.A.T.: A review of definitions for fractional derivatives and integral. Math. Problems Eng. 2014, 1–6 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gieseking, E.: Newton’s law of cooling. An experimental investigation (2014). http://jwilson.coe.uga.edu/EMAT6680Fa2014/Gieseking/Exploration 2012/Newton

  12. Giusti, A.: A comment on some new definitions of fractional derivative. Nonlinear Dyn. 93(3), 1757–1763 (2018)

    Article  MATH  Google Scholar 

  13. Hosseini, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method. Optik 132, 203–209 (2017)

    Article  Google Scholar 

  14. Katugampola, U.N.: A new fractional derivative with classical properties. e-print arXiv:1410.6535

  15. Katugampola, U.N.: Correction to “What is a fractional derivative ?” By Ortigueira and Machado. J. Comput. Phys. 321, 1255–1257 (2016). (J. Comput. Phys. 293, 413 (2015). Special issue on fractional PDEs)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  18. Morales-Delgado, V.F., Gmez-Aguilar, J.F., Escobar-Jimnez, R.F., Taneco-Hernndez, M.A.: Fractional conformable derivatives of Liouville–Caputo type with low-fractionality. Physica A 503, 424–438 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ortigueira, M.D., Machado, J.A.T.: What is a fractional derivative? J. Comput. Phys. 293(15), 4–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ortigueira, M.D., Machado, J.A.T.: Which derivative? Fractal Fractional 1(1), 3 (2017)

    Article  Google Scholar 

  21. Ortigueira, M.D., Machado, J.A.T.: A critical analysis of the Caputo–Fabrizio operator. Commun. Nonlinear Sci. Numer. Simul. 59, 608–611 (2018)

    Article  MathSciNet  Google Scholar 

  22. Roderic, S.: Lakes, Viscoelastic Materials. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  23. Tarasov, V.E.: No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 18(11), 2945–2948 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tarasov, V.E.: No Nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 62, 157–163 (2018)

    Article  MathSciNet  Google Scholar 

  25. Tariq, H., Akram, G.: New traveling wave exact and approximate solutions for the nonlinear Cahn–Allen equation: evolution of a nonconserved quantity. Nonlinear Dyn. 88(1), 581–594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. United Nations, The World at Six Billion Off Site, Table 1, World Population From Year 0 to Stabilization, 5 (1999)

  27. Ward, I.M., Sweeney, J.: Mechanical Properties of Solid Polymers. Wiley, New York (2012)

    Book  Google Scholar 

  28. Yang, S., Wang, L., Zhang, S.: Conformable derivative: application to non-Darcian flow in low-permeability porous media. Appl. Math. Lett. 79, 105–110 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhou, H.W., Yang, S., Zhang, S.Q.: Conformable derivative approach to anomalous diffusion. Physica A 491, 1001–1013 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the valuable comments of the anonymous referees that improved the presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Abdelhakim.

Ethics declarations

Conflict of interest

The authors declares that there is no conflict of interest.

Human participants or animals

The study does not involve any human participants or animals and does not require any form of a consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhakim, A.A., Machado, J.A.T. A critical analysis of the conformable derivative. Nonlinear Dyn 95, 3063–3073 (2019). https://doi.org/10.1007/s11071-018-04741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-04741-5

Keywords

Mathematics Subject Classification

Navigation