Skip to main content
Log in

Singularity analysis on the periodic response of a symmetrical MEMS gyroscope

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The singularity analysis on the periodic response of a symmetric comb driving and sensing MEMS gyroscope is carried out in this paper. Considering the nonlinear stiffness of the elastic beams and the nonlinear electrostatic forces of the driving and sensing combs, the dynamic equations are established by using the Lagrangian equation. The analytical solution of the periodic motion is obtained based on the method of averaging and the residue theorem. The transition sets on the finger spacing-comb separation plane and the DC–AC voltage plane, which divides the parameter planes into 6 regions, are acquired by the singularity theory. The topological structure of the corresponding bifurcation diagrams and the jump phenomenon with the change of the driving frequency are analyzed. Combined with the condition that no multiple solutions appear in the 3 dB bandwidth of the amplitude–frequency curve of the sensing direction, the available parameter regions that meet the working requirements of the gyroscope are given. The influence of the parameters on the mechanical sensitivity and the nonlinearity of the response are analyzed in the available regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (Huabiao Zhang) upon reasonable request.

References

  1. Guo, Z.S., Cheng, F.C., Li, B.Y., et al.: Research development of silicon MEMS gyroscopes: a review. Microsyst. Technol. 21(10), 2053–2066 (2015)

    Article  Google Scholar 

  2. Braghin, F., Resta, F., Leo, E., et al.: Nonlinear dynamics of vibrating MEMS. Sens. Actuators A 134(1), 98–108 (2007)

    Article  Google Scholar 

  3. Asokanthan, S.F., Wang, T.F.: Nonlinear instabilities in a vibratory gyroscope subjected to angular speed fluctuations. Nonlinear Dyn. 54(1–2), 69–78 (2008)

    Article  Google Scholar 

  4. Martynenko, Y.G., Merkuryev, I.V., Podalkov, V.V.: Nonlinear dynamics of MEMS turning fork gyroscope. Sci. China Technol. Sci. 54(5), 1078–1083 (2011)

    Article  Google Scholar 

  5. Nitzan, S.H., Zega, V., Li, M., et al.: Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope. Sci. Rep. 5(1), 9036 (2015)

    Article  Google Scholar 

  6. Pakniyat, A., Salarieh, H.: A parametric study on design of a microrate-gyroscope with parametric resonance. Measurement 46(8), 2661–2671 (2013)

    Article  Google Scholar 

  7. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.: Complexity of resonances exhibited by a nonlinear micromechanical gyroscope: an analytical study. Nonlinear Dyn. 97, 1819–1836 (2019)

    Article  Google Scholar 

  8. Lestev, M.A., Tikhonov, A.A.: Nonlinear phenomena in the dynamics of micromechanical gyroscopes. Vestn. St. Petersbg. Univ. Math. 42(1), 53–57 (2009)

    Article  Google Scholar 

  9. Chen, H.: Fully-Symmetrical and Doubly-Decoupled Micromachined Gyroscope. Harbin Institute of Technology, Harbin (2008)

    Google Scholar 

  10. Guo, Y.G.: Analysis of Non-ideal Characteristics on a Fully-Symmetrical Micromachined Gyroscope. Harbin Institute of Technology, Harbin (2009)

    Google Scholar 

  11. Tsai, N.C., Sue, C.Y.: Stability and resonance of micro-machined gyroscope under nonlinearity effect. Nonlinear Dyn. 56(4), 369–379 (2009)

    Article  Google Scholar 

  12. Taheri-Tehrani, P., Defoort, M., Horsley, D.A.: Operation of a high quality-factor gyroscope in electromechanical nonlinearities regime. J. Micromech. Microeng. 27(7), 75015 (2017)

    Article  Google Scholar 

  13. Lajimi, S.A.M., Heppler, G.R., Abdel-Rahman, E.M.: A mechanical–thermal noise analysis of a nonlinear microgyroscope. Mech. Syst. Signal Process. 83, 163–175 (2017)

    Article  Google Scholar 

  14. Ouakad, H.M.: Nonlinear structural behavior of a size-dependent MEMS gyroscope assuming a non-trivial shaped proof mass. Microsyst. Technol. 26(2), 573–582 (2020)

    Article  Google Scholar 

  15. Liang, D.D., Yang, X.D., Zhang, W., et al.: Linear, nonlinear dynamics, and sensitivity analysis of a vibratory ring gyroscope. Theor. Appl. Mech. Lett. 8(6), 393–403 (2018)

    Article  Google Scholar 

  16. Zhang, H.B., Li, X.Y., Zhang, L.J.: Bifurcation analysis of a micro-machined gyroscope with nonlinear stiffness and electrostatic forces. Micromachines 12(2), 107 (2021)

    Article  Google Scholar 

  17. Tatar, E., Alper, S.E., Akin, T.: Quadrature-error compensation and corresponding effect on the performance of fully decoupled MEMS gyroscopes. J. Microelectromech. Syst. 21(3), 656–667 (2012)

    Article  Google Scholar 

  18. Yang, B., Hu, D., Wang, X.J., et al.: Research of a symmetrical decoupled dual-mass micro-gyroscope with an improved lever support system. Microsyst. Technol. 23(3), 799–810 (2017)

    Article  Google Scholar 

  19. Tatar, E., Mukherjee, T., Fedder, G.K.: Nonlinearity tuning and its effect on the performance of a MEMS gyroscope. In: 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 1133–1136 (2015)

  20. Xu, L., Li, H.S., Liu, J., et al.: Research on nonlinear dynamics of drive mode in z-axis silicon microgyroscope. J. Sens. 2014, 801618 (2014)

    Article  Google Scholar 

  21. Hao, S.Y., Zhu, Y.L., Song, Y.H., et al.: Critical parameters and influence on dynamic behaviours of nonlinear electrostatic force in a micromechanical vibrating gyroscope. Shock. Vib. 2020, 1–15 (2020)

    Google Scholar 

  22. Elshurafa, A.M., Khirallah, K., Tawfik, H.H., et al.: Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators. J. Microelectromech. Syst. 20(4), 943–958 (2011)

    Article  Google Scholar 

  23. Han, J.X., Li, L., Jin, G., et al.: Vibration identification of folded-MEMS comb drive resonators. Micromachines 9(8), 381 (2018)

    Article  Google Scholar 

  24. Zhong, Z.Y., Zhang, W.M., Meng, G., et al.: Inclination effect on the frequency tuning of comb-driven resonators. J. Microelectromech. Syst. 22(4), 865–875 (2013)

    Article  Google Scholar 

  25. Taherian, S., Ganji, B., Jafari-Talookolaei, R.: A novel MEMS tunable comb resonator with non-uniform varied finger lengths. IEEE Sens. J. 20(23), 14101–14108 (2020)

    Article  Google Scholar 

  26. Nayfeh, A., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  27. Brown, J., Churchill, R.V.: Complex Variables and Applications. McGraw-Hill Education, New York (2009)

    Google Scholar 

  28. Werner, C.R.: Numerical analysis of continuation methods for nonlinear structural problems. Comput. Struct. 13(1–3), 103–113 (1981)

    MathSciNet  MATH  Google Scholar 

  29. Hou, L., Chen, Y.S., Fu, Y.Q., et al.: Application of the HB-AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn. 88(4), 2531–2551 (2017)

    Article  Google Scholar 

  30. Golubisky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Springer, New York (1985)

    Book  Google Scholar 

  31. Hou, L., Su, X.C., Chen, Y.S.: Bifurcation modes of periodic solution in a duffing system under constant force as well as harmonic excitation. Int. J. Bifurc. Chaos 29, 1950173 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant nos. 11972145 and 11302223) and Tianjin Excellent Science and Technology Commissioner Support Project (Grant no. 20YDTPJC00080).

Author information

Authors and Affiliations

Authors

Contributions

HZ, LZ, and XL contributed equally to this work.

Corresponding authors

Correspondence to Huabiao Zhang or Dongai Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The residue theorem is used to solve the integral of the following equation.

$$\begin{aligned} {f_{X1}}\mathrm{{ = }} - \frac{\varepsilon }{{2\pi \Omega }}\int _{ - \pi }^\pi {{f_{EX}}\sin {\phi _1}{\mathrm{d}}\phi } \end{aligned}$$
(A.1)

By setting \(z = \exp (i{\phi _1})\), where \({\phi _1} = \Omega \tau + {\theta _1}\), then we have

$$\begin{aligned} \cos {\phi _1} = {} \frac{{{z^2} + 1}}{{2z}}\sin {\phi _1} = \frac{{{z^2} - 1}}{{2iz}} \end{aligned}$$
(A.2)

Substituting (A.2) into (A.1), and according to the residue theorem, we have

$$\begin{aligned} {f_{X1}}= & {} - \frac{\varepsilon }{{2\pi \Omega }}\int _0^{2\pi } \frac{{\rho E{} {{(1 - \beta {} \cos \Omega \tau )}^2}}}{{{{(1 - X)}^2}}} \nonumber \\&- \frac{{\rho E{{(1 + \beta {} \cos \Omega \tau )}^2}}}{{{{(1 + X)}^2}}}\sin {\phi _1} {\mathrm{d}}{\phi _1}\nonumber \\= & {} - \frac{\varepsilon }{{2\pi \Omega }}\oint \limits _{|z| = 1} {f(z){\mathrm{d}}z} \nonumber \\= & {} - \frac{{i\varepsilon }}{\Omega }\sum {\mathrm{{Res}}[f(z),{z_k}]} \end{aligned}$$
(A.3)

where

$$\begin{aligned} f(z) = \frac{{4({z^2} - 1){} \left( \begin{array}{l} i\beta ({A^2}{z^6} - {A^2}{z^2} + {A^2}{} {z^4} - {A^2} + 4{} {z^4} - 4{} {} {z^2})\sin \theta \\ - \beta ({A^2}{} {z^6} + 3{A^2}{} {z^4} + 3{A^2}{} {z^2} + 4{z^4} + {A^2} + 4{z^2})\cos \theta \\ - A{\beta ^2}({z^6} + {z^4} + {z^2} + 1)\cos 2\theta + iA{\beta ^2}({z^6} + {z^4} - 1 - {z^2})\sin 2\theta \\ - (2{} {\beta ^2}{z^2} + 2{} {\beta ^2} + 4{} {z^2} + 4{} )A{z^2} \end{array} \right) }}{{z{{(A{z^2} + A + 2{} z)}^2}{{(A{z^2} + A - 2{} z)}^2}}} \end{aligned}$$

where \({z_k}\) is the isolated singularity of f(z) contained in the unit circle. Note that there are 3 poles in the unit circle, which are

$$\begin{aligned} {z_1}= & {} - \frac{{ - 1 + \sqrt{ - {A^2} + 1} }}{A},\nonumber \\ \mathrm{{ }}{z_2}= & {} \frac{{ - 1 + \sqrt{ - {A^2} + 1} }}{A},\mathrm{{ }}{z_3} = 0 \end{aligned}$$
(A.4)

where \({z_1},{z_2}\) are poles of order 2, and \({z_3}\) is a simple pole, then

$$\begin{aligned}&\mathrm{{Res}}[f(z),{z_k}] = \sum \limits _{k = 1,2} {\mathop {\lim }\limits _{z \rightarrow {z_k}} \frac{{\mathrm{d}}}{{{\mathrm{d}}z}}\{ (z - {z_k})f({z_k})\} } \nonumber \\&\quad + \mathop {\lim }\limits _{z \rightarrow 0} zf(0) \end{aligned}$$
(A.5)

Substituting (A.5) into (A.3) leads to

$$\begin{aligned} {f_{X1}} = - \frac{{4\beta \mathrm{{\{ }}[({A^2} - 2{} )\sqrt{1 - {A^2}} - 2{A^2} + 2{} ]\beta \cos \theta + (A - {A^3} - 4\sqrt{1 - {A^2}} )\mathrm{{\} }}\sin \theta }}{{{A^3}\Omega {} ({A^2} - 1)}} \end{aligned}$$
(A.6)

In the same way, it yields

$$\begin{aligned} \begin{array}{l} {f_{X2}} = - \frac{{\left( \begin{array}{l} [8{(1 - {A^2})^2} + 2(6{A^2} - 4 - {A^4})\sqrt{1 - {A^2}} {} ]{\beta ^2}{\cos ^2}\theta \\ + 4A[{(1 - {A^2})^2} + ({A^2} - 1)\sqrt{1 - {A^2}} ]\beta \cos \theta - 4{} {\beta ^2}{(1 - {A^2})^2}\\ + 2({A^4}{\beta ^2} - 3{A^2}{\beta ^2} + {A^4} + 2{\beta ^2})\sqrt{1 - {A^2}} \end{array} \right) }}{{{A^3}\Omega {} {{\left( {1 - {A^2}} \right) }^2}}}\\ {f_{Y1}} = 0\\ {f_{Y2}} = - \frac{{2A\sqrt{1 - {A^2}} }}{{\Omega {} {{\left( {1 - {A^2}} \right) }^2}}} \end{array} \end{aligned}$$

Appendix B

It can be solved from the first equation of Eq. 24 that

$$\begin{aligned} \sin \theta = \frac{{{C_3}}}{{{C_1} + {C_2}\cos \theta }} \end{aligned}$$
(B.1)

where

$$\begin{aligned} \begin{array}{l} {C_1} = E\beta {} {A_1}{} ({A_1}^4 - 8{A_1}^2\rho - {A_1}^2 - 8\rho \sqrt{1 - {A_1}^2} + 8\rho ),\\ {C_2} = 8E{\beta ^2}\rho {} ({A_1}^2\sqrt{1 - {A_1}^2} - 2\sqrt{1 - {A_1}^2} - 2{A_1}^2 + 2),\\ {C_3} = \xi {} A{1^4}\Omega {} (1 - {A_1}^2) \end{array} \end{aligned}$$

Then we have

$$\begin{aligned} {\cos ^2}\theta + {\sin ^2}\theta = {\cos ^2}\theta + \frac{{{C_3}^2}}{{{{({C_1} + {C_2}\cos \theta )}^2}}} = 1 \end{aligned}$$
(B.2)

The numerator of (B.2) can be given as

$$\begin{aligned} {f_1} = (1 - {\cos ^2}\theta ){({C_1} + {C_2}\cos \theta )^2} - {C_3}^2 = 0 \end{aligned}$$
(B.3)

Take the numerator of the second equation of Eq. 24 and arrange it to have

$$\begin{aligned} {B_1}{\cos ^2}\theta + {B_2}\cos \theta + {B_3} = 0 \end{aligned}$$
(B.4)

where

$$\begin{aligned}&{B_1} = 16{} E{\beta ^2}\rho [({A_1}^4 - 6{} {A_1}^2 + 4)\sqrt{1 - {A_1}^2} \\&\quad - 4{} {(1 - {A_1}^2)^2}]{},\\&{B_2} = - 4{} {A_1}{} E\beta {} [({A_1}^2 + 8{} \rho ){(1 - {A_1}^2)^2} \\&\quad + 8{} \rho (2{A_1}^2 - 1)\sqrt{1 - {A_1}^2} ],\\&{B_3} = {A_1}^4(3{} {A_1}^2\gamma - 4{} {\Omega ^2} + 4{} ){(1 - {A_1}^2)^2} \\&\quad + 16E[(3{A_1}^2 - {A_1}^4 - 2)\sqrt{1 - {A_1}^2} \\&\quad + 2{(1 - {A_1}^2)^2}]{\beta ^2}\rho \\&\quad - 16{} E\rho {} {A_1}^4\sqrt{ - A{1^2} + 1} \end{aligned}$$

According to (B.4), it can be solved

$$\begin{aligned} {\cos ^2}\theta = - \frac{{{B_2}\cos \theta + {B_3}}}{{{B_1}}} \end{aligned}$$
(B.5)

Note that by substituting (B.5) into (B.3), the power of \(\cos \theta \) in (B.3) can be reduced until the expression of \(\cos \theta \) is obtained. Substituting it into Eq. (B.4) can find the expression of the bifurcation equation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, L., Li, X. et al. Singularity analysis on the periodic response of a symmetrical MEMS gyroscope. Nonlinear Dyn 110, 1129–1149 (2022). https://doi.org/10.1007/s11071-022-07711-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07711-0

Keywords

Navigation