Skip to main content

Advertisement

Log in

Global sensitivity analysis of asymmetric energy harvesters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Parametric variability is inevitable in actual energy harvesters. It can significantly affect crucial aspects of the system performance, especially in harvesting systems that present geometric parameters, material properties, or excitation conditions that are susceptible to small perturbations. This work aims to develop an investigation to identify the most critical parameters in the dynamic behavior of asymmetric bistable energy harvesters with nonlinear piezoelectric coupling, considering the variability of their physical and excitation properties. For this purpose, a global sensitivity analysis based on orthogonal variance decomposition, employing Sobol indices, is performed to quantify the effect of the harvester parameters on the variance of the recovered power. This technique quantifies the variance concerning each parameter individually and collectively regarding the total variation of the model. The results indicate that the frequency and amplitude of excitation, asymmetric terms and electrical proprieties of the piezoelectric coupling are the most critical parameters that affect the mean power harvested. It is also shown that the order of importance of the parameters can change according to the stability of the harvester’s dynamic response. In this way, a better understanding of the system under analysis is obtained since the study allows the identification of vital parameters that rule the change of dynamic behavior and therefore constitutes a powerful tool in the robust design, optimization, and response prediction of nonlinear harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

data availability

The data can be reproduced by the codes in STONEHENGE [14].

Code availability

The simulations reported in this paper used the computational code STONEHENGE—Suite for Nonlinear Analysis of Energy Harvesting Systems [38]. This code is available for free on GitHub [14].

References

  1. Abbiati, G., Marelli, S., Tsokanas, N., Sudret, B., Stojadinovic, B.: A global sensitivity analysis framework for hybrid simulation. Mech. Syst. Signal Process. 146, 106997 (2021). https://doi.org/10.1016/j.ymssp.2020.106997

    Article  Google Scholar 

  2. Alemazkoor, N., Rachunok, B., Chavas, D., Staid, A., Louhghalam, A., Nateghi, R., Tootkaboni, M.: Hurricane-induced power outage risk under climate change is primarily driven by the uncertainty in projections of future hurricane frequency. Sci. Rep. 10, 15270 (2020). https://doi.org/10.1038/s41598-020-72207-z

    Article  Google Scholar 

  3. Aloui, R., Larbi, W., Chouchane, M.: Global sensitivity analysis of piezoelectric energy harvesters. Compos. Struct. 228, 111317 (2019). https://doi.org/10.1016/j.compstruct.2019.111317

    Article  Google Scholar 

  4. Aloui, R., Larbi, W., Chouchane, M.: Uncertainty quantification and global sensitivity analysis of piezoelectric energy harvesting using macro fiber composites. Smart Mater. Struct. 29, 095014 (2020). https://doi.org/10.1088/1361-665X/ab9f12

    Article  Google Scholar 

  5. Arnold, D.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007). https://doi.org/10.1109/TMAG.2007.906150

    Article  Google Scholar 

  6. Cacuci, D.: Sensitivity and Uncertainty Analysis: Theory, vol. 1. Chapman Hall/CRC, New York, Boca Raton (2003)

    Book  Google Scholar 

  7. Cao, J., Wang, W., Zhou, S., Inman, D., Lin, J.: Nonlinear time-varying potential bistable energy harvesting from human motion. Appl. Phys. Lett. 107, 143904 (2015). https://doi.org/10.1063/1.4932947

    Article  Google Scholar 

  8. Catacuzzeno, L., Orfei, F., Di Michele, A., Sforna, L., Franciolini, F., Gammaitoni, L.: Energy harvesting from a bio cell. Nano Energy 823–827, 823 (2019). https://doi.org/10.1016/j.nanoen.2018.12.023

    Article  Google Scholar 

  9. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009). https://doi.org/10.1103/PhysRevLett.102.080601

    Article  Google Scholar 

  10. Crawley, E., Anderson, E.: Detailed models of piezoceramic actuation of beams. J. Intell. Mater. Syst. Struct. 1, 4–25 (1990). https://doi.org/10.1177/1045389X9000100102

    Article  Google Scholar 

  11. Crestaux, T., Le Maıtre, O., Martinez, J.M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94, 1161–1172 (2009). https://doi.org/10.1016/j.ress.2008.10.008

    Article  Google Scholar 

  12. Cunha, A., Jr.: Enhancing the performance of a bistable energy harvesting device via the cross-entropy method. Nonlinear Dyn. 103, 137–155 (2021). https://doi.org/10.1007/s11071-020-06109-0

    Article  Google Scholar 

  13. Cunha, A., Jr., Nasser, R., Sampaio, R., Lopes, H., Breitman, K.: Uncertainty quantification through the Monte Carlo method in a cloud computing setting. Comput. Phys. Commun. 185, 1355–1363 (2014). https://doi.org/10.1016/j.cpc.2014.01.006

    Article  Google Scholar 

  14. Cunha Jr, A., Norenberg, J., Peterson, J., Lopes, V.G.: STONEHENGE—Suite for Nonlinear Analysis of Energy Harvesting Systems (2021). https://americocunhajr.github.io/STONEHENGE

  15. Daqaq, M., Crespo, R., Ha, S.: On the efficacy of charging a battery using a chaotic energy harvester. Nonlinear Dyn. 99, 1525–1537 (2020). https://doi.org/10.1007/s11071-019-05372-0

    Article  Google Scholar 

  16. Daqaq, M., Masana, R., Erturk, A., Quinn, D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014). https://doi.org/10.1115/1.4026278

    Article  Google Scholar 

  17. duToit, N., Wardle, B.: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAAJ J. (2017). https://doi.org/10.2514/1.25047

  18. Erturk, A., Hoffmann, J., Inman, D.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009). https://doi.org/10.1063/1.3159815

    Article  Google Scholar 

  19. Erturk, A., Inman, D.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 1–18 (2009). https://doi.org/10.1088/0964-1726/18/2/025009

    Article  Google Scholar 

  20. Erturk, A., Inman, D.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vibr. 330, 2339–2353 (2011). https://doi.org/10.1016/j.jsv.2010.11.018

    Article  Google Scholar 

  21. Franco, V., Varoto, P.: Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters. Mech. Syst. Signal Process. 93, 593–609 (2017). https://doi.org/10.1016/j.ymssp.2017.02.030

    Article  Google Scholar 

  22. Ghanem, R., Spanos, P.: Stochastic Finite Elements—A Spectral Approach. Springer, Berlin (1991)

    Book  Google Scholar 

  23. Halvorsen, E.: Fundamental issues in nonlinear wideband-vibration energy harvesting. Phys. Rev. E 87, 042129 (2013). https://doi.org/10.1103/PhysRevE.87.042129

    Article  Google Scholar 

  24. He, Q., Daqaq, M.F.: Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise. J. Sound Vibr. 333, 3479–3489 (2014). https://doi.org/10.1115/DETC2014-34397

    Article  Google Scholar 

  25. Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19, 293–325 (1948). https://doi.org/10.1214/aoms/1177730196

    Article  MathSciNet  MATH  Google Scholar 

  26. Homma, T., Saltelli, A.: Importance measures in the global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996). https://doi.org/10.1016/0951-8320(96)00002-6

    Article  Google Scholar 

  27. Huang, D., Zhou, S., Litak, G.: Nonlinear analysis of multistable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 69, 270–286 (2019)

    Article  MathSciNet  Google Scholar 

  28. Karami, M.A., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012). https://doi.org/10.1063/1.3679102

    Article  Google Scholar 

  29. Kroese, D., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods, vol. 1. Wiley, NJ (2011)

    Book  Google Scholar 

  30. Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79, 1727–1743 (2015). https://doi.org/10.1007/s11071-014-1770-x

    Article  Google Scholar 

  31. Lee, Y., Qi, Y., Zhou, G., Lua, K.: Vortex-induced vibration wind energy harvesting by piezoelectric mems device information. Sci. Rep. 9, 20404 (2019). https://doi.org/10.1038/s41598-019-56786-0

    Article  Google Scholar 

  32. Li, Y., Zhou, S., Litak, G.: Uncertainty analysis of bistable vibration energy harvesters based on the improved interval extension. J. Vibr. Eng. Technol. 8, 297–306 (2020). https://doi.org/10.1007/s42417-019-00134-z

    Article  Google Scholar 

  33. Lopes, V., Peterson, J., Cunha Jr, A.: Nonlinear characterization of a bistable energy harvester dynamical system. In: Topics in Nonlinear Mechanics and Physics, vol. 228, pp. 71–88. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-9463-8_3

  34. Lund, A., Dyke, J., Song, W., Bilionis, I.: Global sensitivity analysis for the design of nonlinear identification experiments. Nonlinear Dyn. 98, 375–394 (2019). https://doi.org/10.1007/s11071-019-05199-9

    Article  MATH  Google Scholar 

  35. Mann, B., Barton, D., Owens, B.: Uncertainty in performance for linear and nonlinear energy harvesting strategies. J. Intell. Mater. Syst. Struct. 23, 1451–1460 (2012). https://doi.org/10.1177/1045389X12439639

    Article  Google Scholar 

  36. Mitcheson, P., Miao, P., Stark, B., Yeatman, E., Holmes, A., Green, T.: Mems electrostatic micropower generator for low frequency operation. Sens. Actuators, A 115, 523–529 (2004). https://doi.org/10.1016/j.sna.2004.04.026

    Article  Google Scholar 

  37. Nagel, J., Rieckermann, J., Sudrer, B.: Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: application to urban drainage simulation. Reliab. Eng. Syst. Saf. 195, 106737 (2020). https://doi.org/10.1016/j.ress.2019.106737

    Article  Google Scholar 

  38. Norenberg, J., Peterson, J., Lopes, V., Luo, R., de la Roca, L., Pereira, M., Ribeiro, J., Cunha Jr, A.: STONEHENGE—suite for nonlinear analysis of energy harvesting systems. Softw. Impacts (2021). https://doi.org/10.1016/j.simpa.2021.100161

  39. Oladyshkin, S., Nowak, W.: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Saf. 106, 179–190 (2012). https://doi.org/10.1016/j.ress.2012.05.002

    Article  Google Scholar 

  40. Palar, P., Zuhal, L., Shimoyama, K., Tsuchiya, T.: Global sensitivity analysis via multi-fidelity polynomial chaos expansion. Reliab. Eng. Syst. Saf. 170, 175–190 (2018). https://doi.org/10.1016/j.ress.2017.10.013

    Article  Google Scholar 

  41. Ruiz, R., Meruane, V.: Uncertainties propagation and global sensitivity analysis of the frequency response function of piezoelectric energy harvesters. Smart Mater. Struct. 26, 065003 (2017). https://doi.org/10.1088/1361-665X/aa6cf3

    Article  Google Scholar 

  42. Saltelli, A., Chan, K., Scott, E.: Sensitivity Analysis. Wiley, New York (2000)

    MATH  Google Scholar 

  43. Sepahvand, K., Marburg, S., Hardtke, H.: Uncertainty quantification in stochastic systems using polynomial chaos expansion. Inter. J. App. Mech. 2, 305–353 (2010). https://doi.org/10.1142/S1758825110000524

    Article  Google Scholar 

  44. Sobol, I.: Sensitivity estimates for nonlinear mathematical models. Math. Comput. Model. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  45. Soize, C.: Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering, vol. 1. Springer (2017)

  46. Stanton, S., Erturk, A., Mann, B., Inman, D.: Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification. J. Appl. Phys. 108, 074903 (2010). https://doi.org/10.1063/1.3486519

  47. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008). https://doi.org/10.1016/j.ress.2007.04.002

    Article  Google Scholar 

  48. Triplett, A., Quinn, D.: The effect of nonlinear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20, 1959–1967 (2009). https://doi.org/10.1177/1045389X09343218

    Article  Google Scholar 

  49. Wang, W., Cao, J., Bowen, C., Zhang, Y., Lin, J.: Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters. Nonlinear Dyn. 94, 1183–1194 (2018). https://doi.org/10.1007/s11071-018-4417-5

    Article  Google Scholar 

  50. Wang, Y., Yang, E., Chen, T., Wang, J., Hu, Z., Mi, J., Pan, X., Xu, M.: A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy 78, 105279 (2020). https://doi.org/10.1016/j.nanoen.2020.105279

    Article  Google Scholar 

  51. Xin, W., Zhang, Z., Huang, X., Hu, Y., Zhou, T., Zhu, C., Kong, X., Jiang, L., Wen, L.: High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 10, 3876 (2019). https://doi.org/10.1038/s41467-019-11792-8

    Article  Google Scholar 

  52. Xiu, D.: Numerical Methods for Stochastic Computations: A spectral method approach. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  53. Yang, K., Fei, F., An, H.: Investigation of coupled lever-bistable nonlinear energy harvesters for enhancement of inter-well dynamic response. Nonlinear Dyn. 96, 2369–2392 (2019). https://doi.org/10.1007/s11071-019-04929-3

    Article  Google Scholar 

  54. Yi, F., Wang, X., Niu, S., Li, S., Yin, Y., Dai, K., Zhang, G., Lin, L., Wen, Z., Guo, H., Wang, J., Yeh, M., Zi, Y., Liao, Q., You, Z., Zhang, Y., Wang, Z.: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2, 1501624 (2016). https://doi.org/10.1126/sciadv.1501624

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge, for the financial support given to this research, the following Brazilian agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Finance Code 001; São Paulo Research Foundation (FAPESP), Grant Number 19/19684-3; Brazilian National Council for Scientific and Technological Development (CNPq) grant number 306526/2019-0; Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) Grants 210.167/2019, 211.037/2019 and 201.294/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Pedro Norenberg.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 3689 KB)

Supplementary file 2 (mp4 3911 KB)

Supplementary file 3 (mp4 2751 KB)

Supplementary file 4 (pdf 1306 KB)

Supplementary file 5 (mp4 2489 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norenberg, J.P., Cunha, A., da Silva, S. et al. Global sensitivity analysis of asymmetric energy harvesters. Nonlinear Dyn 109, 443–458 (2022). https://doi.org/10.1007/s11071-022-07563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07563-8

Keywords

Navigation