Skip to main content
Log in

Nonlinear oscillation of active magnetic bearing–rotor systems with a time-delayed proportional–derivative controller

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A time-delayed proportional–derivative controller is applied to suppress the nonlinear vibration of a rigid rotor suspended by the active magnetic bearing (AMB) subjected to multiple excitations. The rotor eccentricity, the parametric excitations, the gravity of the rotor, and the coupling of the electromagnetic force between horizontal and vertical directions are taken into consideration in the dimensionless governing equation. The method of multiple scales is applied to obtain the approximate solution. Based on the Routh–Hurwitz stability criterion, the stability of steady-state solutions is discussed. Then, the influence of the control parameters and the time delay in the proportional and derivative control loop on the system is studied. And the optimal operating conditions are given. The results show that there exist multi-solutions and jump phenomena under certain conditions. Finally, the numerical solutions are obtained by applying ODE45 and DDE23 MATLAB solvers. And the analytical solutions have an excellent agreement with the numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ma, X., Zheng, S., Wang, K.: Active surge control for magnetically suspended centrifugal compressors using a variable equilibrium point approach. IEEE Trans. Ind. Electron. 66(12), 9383–9393 (2019)

    Article  Google Scholar 

  2. Lee, J.H., Allaire, P., Tao, G., Decker, J., Zhang, X.: Experimental study of sliding mode control for a benchmark magnetic bearing system and artificial heart pump suspension. IEEE Trans. Control Syst. Technol. 11(1), 128–138 (2003)

    Article  Google Scholar 

  3. Rachmanto, B., Nonami, K.: Stabilization control and energy performance analysis of AMB flywheel electric vehicle. Int. J Appl. Mech. Eng. 16(2), 487–508 (2011)

    Google Scholar 

  4. Tang, J., Fang, J., Wen, W.: Superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel for spacecraft. IEEE Trans. Appl. Supercond. 22(6), 5702109–5702109 (2012)

    Article  Google Scholar 

  5. Sreedhar, B., Kumar, R.N., Sharma, P., Ruhela, S., Philip, J., Sundarraj, S., Chakraborty, N., Mohana, M., Sharma, V., Padmakumar, G., Nashine, B., Rajan, K.: Development of active magnetic bearings and ferrofluid seals toward oil free sodium pumps. Nuclear Eng. Des. 265(Complete), 1166–1174 (2013)

  6. Bednarek, M., Lewandowski, D., Polczyński, K., Awrejcewicz, J.: On the active damping of vibrations using electromagnetic spring. Mech. Based Des. Struct. Mach. 49(8), 1131–1144 (2021)

    Article  Google Scholar 

  7. Wijata, A., Polczyński, K., Awrejcewicz, J.: Theoretical and numerical analysis of regular one-side oscillations in a single pendulum system driven by a magnetic field. Mech. Syst. Signal Process. 150, 107229 (2021)

    Article  Google Scholar 

  8. Polczyński, K., Skurativskyi, S., Bednarek, M., Awrejcewicz, J.: Nonlinear oscillations of coupled pendulums subjected to an external magnetic stimulus. Mech. Syst. Signal Process. 154, 107560 (2021)

    Article  Google Scholar 

  9. Ji, J.C., Yu, L., Leung, A.: Bifurcation behavior of a rotor supported by active magnetic bearings. J. Sound Vib. 235(1), 133–151 (2000)

    Article  Google Scholar 

  10. Awrejcewicz, J., Sendkowski, D.: How to predict stick-slip chaos in \(R^4\). Phys. Lett. A 330(5), 371–376 (2004)

    Article  MathSciNet  Google Scholar 

  11. Awrejcewicz, J., Sendkowski, D.: Stick-slip chaos detection in coupled oscillators with friction. Int. J. Solids Struct. 42(21–22), 5669–5682 (2005)

    Article  MathSciNet  Google Scholar 

  12. Awrejcewicz, J., Pyryev, Y.: Chaos prediction in the Duffing-type system with friction using Melnikov’s function. Nonlinear Anal. Real World Appl. 7(1), 12–24 (2006)

    Article  MathSciNet  Google Scholar 

  13. C., J.J.: Stability and bifurcation in an electromechanical system with time delays. Mech. Res. Commun. 30(3), 217–225 (2003)

  14. Ji, J.C.: Stability and hopf bifurcation of a magnetic bearing system with time delays. J. Sound Vib. 259(4), 845–856 (2003)

    Article  MathSciNet  Google Scholar 

  15. Zhang, W., Zhan, X.P.: Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness. Nonlinear Dyn. 41(4), 331–359 (2005)

    Article  MathSciNet  Google Scholar 

  16. Zhang, W., Yao, M.H., Zhan, X.P.: Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness. Chaos Solitons and Fractals 27(1), 175–186 (2006)

    Article  Google Scholar 

  17. Inoue, T., Ishida, Y.: Nonlinear forced oscillation in a magnetically levitated system: the effect of the time delay of the electromagnetic force. Nonlinear Dyn. 52(1–2), 103–113 (2008)

    Article  Google Scholar 

  18. Zhang, W., Zu, J.W., Wang, F.X.: Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying stiffness. Chaos Solitons and Fractals 35(3), 586–608 (2008)

    Article  MathSciNet  Google Scholar 

  19. Awrejcewicz, J., Dzyubak, L.P.: 2-DOF non-linear dynamics of a rotor suspended in the magneto-hydrodynamic field in the case of soft and rigid magnetic materials. Int. J. Non-Linear Mech. 45(9), 919–930 (2010)

    Article  Google Scholar 

  20. Awrejcewicz, J., Dzyubak, L.P.: Chaos caused by hysteresis and saturation phenomenon in 2-DOF vibrations of the rotor supported by the magneto-hydrodynamic bearing. Int. J. Bifurcation Chaos 21(10), 2801–2823 (2011)

    Article  Google Scholar 

  21. Zheng, K., Yu, L.: Effects of time delay on resonance of a nonlinear magnetic bearing system with delayed feedback. Int. J. Appl. Electromagnet. Mech. 33(3–4), 1547–1554 (2010)

    Article  Google Scholar 

  22. Eissa, M., Kandil, A., El-Ganaini, W.A., Kamel, M.: Analysis of a nonlinear magnetic levitation system vibrations controlled by a time-delayed proportional-derivative controller. Nonlinear Dyn. 79(2), 1217–1233 (2015)

    Article  Google Scholar 

  23. Eissa, M., Kandil, A., El-Ganaini, W.A., Kamel, M.: Vibration suppression of a nonlinear magnetic levitation system via time delayed nonlinear saturation controller. Int. J Non-Linear Mech. 72, 23–41 (2015)

  24. Ji, J.C., Hansen, C.H.: Non-linear oscillations of a rotor in active magnetic bearings. J. Sound Vib. 240(4), 599–612 (2001)

    Article  Google Scholar 

  25. Ji, J.C., Leung, A.: Non-linear oscillations of a rotor-magnetic bearing system under superharmonic resonance conditions. Int. J. Non-Linear Mech. 38(6), 829–835 (2003)

    Article  Google Scholar 

  26. Hegazy, U.H., Eissa, M.H., Amer, Y.A.: A time-varying stiffness rotor active magnetic bearings under combined resonance. J. Appl. Mech. 75(1), 011011 (2008)

    Article  Google Scholar 

  27. Kamel, M., Bauomy, H.: Nonlinear oscillation of a rotor-AMB system with time varying stiffness and multi-external excitations. J. Vib. Acoust. 131(3), 031009 (2009)

    Article  Google Scholar 

  28. Kamel, M., Bauomy, H.: Nonlinear study of a rotor-AMB system under simultaneous primary-internal resonance. Appl. Math. Model. 34(10), 2763–2777 (2010)

    Article  MathSciNet  Google Scholar 

  29. Eissa, M., Kamel, M., Bauomy, H.S.: Dynamics of an AMB-rotor with time varying stiffness and mixed excitations. Meccanica 47(3), 585–601 (2012)

    Article  MathSciNet  Google Scholar 

  30. Eissa, M., Kamel, M., Al-Mandouh, A.: Vibration suppression of a time-varying stiffness AMB bearing to multi-parametric excitations via time delay controller. Nonlinear Dyn. 78(4), 2439–2457 (2014)

    Article  Google Scholar 

  31. Saeed., N.A., Kamel, M.: Nonlinear PD-controller to suppress the nonlinear oscillations of horizontally supported Jeffcott-rotor system. Int. J. Non-linear Mech. 87(dec.), 109–124 (2016)

  32. Saeed, N.A., Kamel, M.: Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system. Nonlinear Dyn. 90(1), 457–478 (2017)

    Article  Google Scholar 

  33. Saeed, N.A., El-Ganaini, W.A.: Utilizing time-delays to quench the nonlinear vibrations of a two-degree-of-freedom system. Meccanica 52(11), 2969–2990 (2017)

    Article  MathSciNet  Google Scholar 

  34. N. A. Saeedand El-Ganaini, W.: Time-delayed control to suppress the nonlinear vibrations of a horizontally suspended Jeffcott-rotor system. Appl. Math. Model. 44, 523–539 (2017)

  35. Eissa, M., Saeed, N.A., El-Ganini, W.A.: Saturation-based active controller for vibration suppression of a four-degree-of-freedom rotor-AMB system. Nonlinear Dyn. 76(1), 743–764 (2014)

    Article  MathSciNet  Google Scholar 

  36. Saeed, N.A., Eissa, M., El-Ganini, W.A.: Nonlinear oscillations of rotor active magnetic bearings system. Nonlinear Dyn. 74(1–2), 1–20 (2013)

    Article  MathSciNet  Google Scholar 

  37. Saeed, N.A., Kandil, A.: Lateral vibration control and stabilization of the quasiperiodic oscillations for rotor-active magnetic bearings system. Nonlinear Dyn. 98(2), 1191–1218 (2019)

    Article  Google Scholar 

  38. Schweitzer, G., Maslen, E.H.: Magnetic bearings: theory, design, and application to rotating machinery. Springer (2009)

Download references

Acknowledgements

The authors gratefully acknowledge the support of the High-Tech Ship Research Project of Ministry of Industry and Information Technology through grant no. MIIT[2017]614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipeng Geng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Substituting Eq. (1), (2) and (4) into (3), the resultant force \(F_x\) and \(F_y\) can be obtained as:

$$\begin{aligned} F_x&=\left[ -I_b^2\mathrm{cos}^4\alpha -\left( I_b^2+i_0^2\right) \mathrm{sin}^4\alpha \right] \frac{16k}{g_0^5}x^3\nonumber \\&+\frac{24kI_bk_d\mathrm{cos}^3\alpha }{g_0^4}x^2{\dot{x}}_{\tau _2}+\frac{24kI_bk_p\mathrm{cos}^3\alpha }{g_0^4}x^2x_{\tau _1}\nonumber \\&-\left( 2I_b^2+i_0^2\right) \frac{48k\mathrm{sin}^2\alpha \mathrm{cos}^2\alpha }{g_0^5}xy^2+\frac{48kI_bi_0\mathrm{sin}^2\alpha \mathrm{cos}\alpha }{g_0^4}xy\nonumber \\&+\frac{48kk_pI_b\mathrm{sin}^2\alpha \mathrm{cos}\alpha }{g_0^4}xyy_{\tau _1}+\frac{48kk_dI_b\mathrm{sin}^2\alpha \mathrm{cos}\alpha }{g_0^4}xy{\dot{y}}_{\tau _2}\nonumber \\&-\frac{8kk_d^2\mathrm{cos}^2\alpha }{g_0^3}x{\dot{x}}^2_{\tau _2}-\frac{16kk_pk_d\mathrm{cos}^2\alpha }{g_0^3}xx_{\tau _1}{\dot{x}}_{\tau _2}-\frac{8kI_b^2\mathrm{cos}^2\alpha }{g_0^3}x\nonumber \\&-\frac{8k\left( I_b^2+i_0^2\right) \mathrm{sin}^2\alpha }{g_0^3}x-\frac{16kk_di_0\mathrm{sin}^2\alpha }{g_0^3}x{\dot{y}}_{\tau _2}\nonumber \\&-\frac{16kk_pi_0\mathrm{sin}^2\alpha }{g_0^3}xy_{\tau _1}-\frac{8kk_d^2\mathrm{sin}^2\alpha }{g_0^3}x{\dot{y}}^2_{\tau _2}-\frac{8kk_p^2\mathrm{sin}^2\alpha }{g_0^3}xy^2_{\tau _1}\nonumber \\&-\frac{16kk_pk_d\mathrm{sin}^2\alpha }{g_0^3}xy_{\tau _1}{\dot{y}}_{\tau _2}-\frac{8kk_p^2\mathrm{cos}^2\alpha }{g_0^3}xx^2_{\tau _1}\nonumber \\&+\frac{24kI_bk_d\mathrm{sin}^2\alpha \mathrm{cos}\alpha }{g_0^4}y^2{\dot{x}}_{\tau _2}+\frac{24kI_bk_p\mathrm{sin}^2\mathrm{cos}\alpha }{g_0^4}y^2x_{\tau _1}\nonumber \\&+\frac{8kI_bk_d\mathrm{cos}\alpha }{g_0^2}{\dot{x}}_{\tau _2}+\frac{8kI_bk_p\mathrm{cos}\alpha }{g_0^2}x_{\tau _1} \end{aligned}$$
(A.1a)
$$\begin{aligned} F_y&=\frac{24kI_bi_0\mathrm{sin}^2\alpha \mathrm{cos}\alpha }{g_0^4}x^2+\frac{24kk_pI_b\mathrm{sin}^2\alpha \mathrm{cos}\alpha }{g_0^4}x^2y_{\tau _1}\nonumber \\&+\frac{24kk_dI_b\mathrm{sin}^2\alpha \mathrm{cos}\alpha }{g_0^4}x^2{\dot{y}}_{\tau _2}-\frac{48k\left( I_b^2+i_0^2\right) \mathrm{sin}^2\alpha \mathrm{cos}^2\alpha }{g_0^5}x^2y\nonumber \\&-\frac{48kI_b^2\mathrm{sin}^2\alpha \mathrm{cos}^2\alpha }{g_0^5}x^2y+\frac{48kI_bk_d\mathrm{sin}^2\alpha \mathrm{cos}\alpha }{g_0^4}xy{\dot{x}}_{\tau _2}\nonumber \\&+\frac{48kI_bk_p\mathrm{sin}^2\alpha \mathrm{cos}\alpha }{g_0^4}xyx_{\tau _1}-\frac{16k\left( I_b^2+i_0^2\right) \mathrm{ocs}^4\alpha }{g_0^5}y^3\nonumber \\&-\frac{16kI_b^2\mathrm{sin}^4\alpha }{g_0^5}y^3+\frac{24kI_bi_0\mathrm{cos}^3\alpha }{g_0^4}y^2+\frac{24kk_pk_dI_b\mathrm{cos}^3\alpha }{g_0^4}y^2y_{\tau _1}\nonumber \\&+\frac{24kk_dI_b\mathrm{cos}^3\alpha }{g_0^4}y^2{\dot{y}}_{\tau _2}-\frac{8kk_d^2\mathrm{sin}^2\alpha }{g_0^3}y{\dot{x}}^2_{\tau _2}\nonumber \\&-\frac{16kk_pk_d\mathrm{sin}^2\alpha }{g_0^3}yx_{\tau _1}{\dot{x}}_{\tau _2}-\frac{8k\left( I_b^2+i^2_0\right) \mathrm{cos}^2\alpha }{g_0^3}y\nonumber \\&-\frac{8kI_b^2\mathrm{sin}^2\alpha }{g_0^3}y-\frac{16kk_pi_0\mathrm{cos}^2\alpha }{g_0^3}yy_{\tau _1}-\frac{16kk_di_0\mathrm{cos}^2\alpha }{g_0^3}y{\dot{y}}_{\tau _2}\nonumber \\&-\frac{8kk_d^2\mathrm{cos}^2\alpha }{g_0^3}y{\dot{y}}^2_{\tau _2}-\frac{8kk_p^2\mathrm{cos}^2\alpha }{g_0^3}yy^2_{\tau _1}-\frac{16kk_pk_d\mathrm{cos}^2\alpha }{g_0^3}yy_{\tau _1}{\dot{y}}_{\tau _2}\nonumber \\&-\frac{8kk_p^2\mathrm{sin}^2\alpha }{g_0^3}yx^2_{\tau _1}+\frac{8kI_bi_0\mathrm{cos}\alpha }{g_0^2}+\frac{8kk_dI_b\mathrm{cos}\alpha }{g_0^2}{\dot{y}}_{\tau _2}\nonumber \\&+\frac{8kk_pI_b\mathrm{cos}\alpha }{g_0^2}y_{\tau _1} \end{aligned}$$
(A.1b)

Substituting Eq. (A.1) into (5), it can be derived as:

$$\begin{aligned} \ddot{x}&+\mu _1{\dot{x}}-16[\mathrm{cos}^4\alpha +(1+i_0^2)\mathrm{sin}^4\alpha ]x^3+24d\mathrm{cos}^3\nonumber \\&\times \alpha x^2{\dot{x}}_{\tau _2}+24p\mathrm{cos}^3\alpha x^2x_{\tau _1}-48(2+i_0^2)\mathrm{sin}^2\alpha \mathrm{cos}^2\alpha xy^2\nonumber \\&+48i_0\mathrm{sin}^2\alpha \mathrm{cos}\alpha xy+48p\mathrm{sin}^2\alpha \mathrm{cos}\alpha xyy_{\tau _1}\nonumber \\&+48d\mathrm{sin}^2\alpha \mathrm{cos}\alpha xy{\dot{y}}_{\tau _2}-8d^2\mathrm{cos}^2\alpha x{\dot{x}}^2_{\tau _2}\nonumber \\&-16pd\mathrm{cos}^2\alpha xx_{\tau _1}{\dot{x}}_{\tau _2}-8\mathrm{cos}^2\alpha x-8(1+i_0^2)\mathrm{sin}^2\alpha x\nonumber \\&-16di_0\mathrm{sin}^2\alpha x{\dot{y}}_{\tau _2}-16pi_0\mathrm{sin}^2\alpha xy_{\tau _1}-8d^2\mathrm{sin}^2\alpha x {\dot{y}}^2_{\tau _2}\nonumber \\&-8p^2\mathrm{sin}^2\alpha xy^2_{\tau _1}-16pd\mathrm{sin}^2\alpha xy_{\tau _1}{\dot{y}}_{\tau _2}-8p^2\mathrm{cos}^2\alpha xx^2_{\tau _1}\nonumber \\&+24d\mathrm{sin}^2\alpha \mathrm{cos}\alpha y^2{\dot{x}}_{\tau _2}+24p\mathrm{sin}^2\alpha \mathrm{cos}\alpha y^2x_{\tau _1}\nonumber \\&+8d\mathrm{cos}\alpha {\dot{x}}_{\tau _2}+8p\mathrm{cos}\alpha x_{\tau _1}=\frac{2f\omega ^2}{\xi ^2}\mathrm{cos}(\omega t) \end{aligned}$$
(A.2a)
$$\begin{aligned} \ddot{y}&+\mu _1{\dot{y}}+24i_0\mathrm{sin}^2\alpha \mathrm{cos}\alpha x^2+24p\mathrm{sin}^2\alpha \mathrm{cos}\alpha x^2y_{\tau _1}\nonumber \\&+24d\mathrm{sin}^2\alpha \mathrm{cos}\alpha x^2{\dot{y}}_{\tau _2}-48(1+i_0^2)\mathrm{sin}^2\alpha \mathrm{cos}^2\alpha x^2y\nonumber \\&-48\mathrm{sin}^2\alpha \mathrm{cos}^2\alpha x^2y+48d\mathrm{sin}^2\alpha \mathrm{cos}\alpha xy{\dot{x}}_{\tau _2}\nonumber \\&+48p\mathrm{sin}^2\alpha \mathrm{cos}\alpha xyx_{\tau _1}-16(1+i_0^2)\mathrm{cos}^4\alpha y^3 \nonumber \\&-16\mathrm{sin}^4\alpha y^3+24i_0\mathrm{cos}^3\alpha y^2+24p\mathrm{cos}^3\alpha y^2y_{\tau _1}\nonumber \\&+24d\mathrm{cos}^3\alpha y^2{\dot{y}}_{\tau _2}-8d^2\mathrm{sin}^2\alpha y{\dot{x}}^2_{\tau _2}\nonumber \\&-16pd\mathrm{sin}^2\alpha yx_{\tau _1}{\dot{x}}_{\tau _2}-8(1+i_0^2)\mathrm{cos}^2\alpha y\nonumber \\&-8\mathrm{sin}^2\alpha y-16pi_0\mathrm{cos}^2\alpha yy_{\tau _1}-16di_0\mathrm{cos}^2\alpha y{\dot{y}}_{\tau _2}\nonumber \\&-8d^2\mathrm{cos}^2\alpha y{\dot{y}}^2_{\tau _2}-8p^2\mathrm{cos}^2\alpha yy^2_{\tau _1}-16pd\mathrm{cos}^2\nonumber \\&\alpha yy_{\tau _1}{\dot{y}}_{\tau _2}-8p^2\mathrm{sin}^2\alpha yx^2_{\tau _1}+8d^2\mathrm{cos}\alpha {\dot{y}}_{\tau _2}+8p\mathrm{cos}\alpha y_{\tau _1}\nonumber \\&=\frac{2f\omega ^2}{\xi ^2}\mathrm{sin}(\omega t) \end{aligned}$$
(A.2b)

where \(p=\frac{kI_bk_p}{\xi ^2mg_0^2}\), \(d=\frac{kk_dI_b}{\xi mg_0^2}\), \(\mu _1=\frac{c}{m\xi }\), \(f=\frac{m_ue}{2mg_0}\), \(\xi =\sqrt{\frac{kI_b^2}{mg_0^3}}\). Introducing non-dimensional parameters \(t^*=\xi t,\omega =\xi \varOmega ,x=g_0x^*,y=g_0y^*,i_0=I_bi_0^*\), and omitting the asterisk for brevity, Eq. (A.2) can be rewritten as:

$$\begin{aligned} \ddot{x}&+\mu _1{\dot{x}}+\omega _1^2x+\gamma _1xy+\gamma _2xy^2+\gamma _3x^3=\alpha _1xy_{\tau _1}\nonumber \\&+\alpha _2x{\dot{y}}_{\tau _2}+\alpha _3\left( x-x_{\tau _1}\right) +\alpha _4{\dot{x}}_{\tau _2}+\alpha _5x^2{\dot{x}}_{\tau _2}\nonumber \\&+\alpha _6x^2x_{\tau _1}+\alpha _7xyy_{\tau _1}+\alpha _8xy{\dot{y}}_{\tau _2}+\alpha _9x{\dot{x}}^2_{\tau _2}\nonumber \\&+\alpha _{10}xx_{\tau _1}{\dot{x}}_{\tau _2}+\alpha _{11}x{\dot{y}}^2_{\tau _2}+\alpha _{12}xy^2_{\tau _1}\nonumber \\&+\alpha _{13}xy_{\tau _1}{\dot{y}}_{\tau _2}+\alpha _{14}xx^2_{\tau _1}+\alpha _{15}y^2{\dot{x}}_{\tau _2}+\alpha _{16}y^2x_{\tau _1}\nonumber \\&+2f\varOmega ^2\mathrm{cos}\left( \varOmega t\right) \end{aligned}$$
(A.3a)
$$\begin{aligned} \ddot{y}&+\mu _1{\dot{y}}+\omega ^2_2y+\gamma _4x^2+\gamma _5y^2+\gamma _6x^2y+\gamma _7y^3\nonumber \\&=\beta _1yy_{\tau _1}+\beta _2y{\dot{y}}_{\tau _2}+\beta _3\left( y-y_{\tau _1}\right) +\beta _4{\dot{y}}_{\tau _2}\nonumber \\&+\beta _5x^2y_{\tau _1}+\beta _6x^2{\dot{y}}_{\tau _2}+\beta _7xy{\dot{x}}_{\tau _2}+\beta _8xyx_{\tau _1}\nonumber \\&+\beta _9y^2y_{\tau _1}+\beta _{10}y^2{\dot{y}}_{\tau _2}+\beta _{11}y{\dot{x}}^2_{\tau _2}+\beta _{12}yx_{\tau _1}{\dot{x}}_{\tau _2}\nonumber \\&+\beta _{13}y{\dot{y}}^2_{\tau _2}+\beta _{14}yy^2_{\tau _1}+\beta _{15}yy_{\tau _1}{\dot{y}}_{\tau _2}+\beta _{16}yx^2_{\tau _1}\nonumber \\&+2f\varOmega \mathrm{sin}\left( \varOmega t\right) \end{aligned}$$
(A.3b)

where the coefficients are listed in the following equations:

$$\begin{aligned} \omega _1= & {} \sqrt{8(p\mathrm{cos}\alpha -1)-8i_0^2\mathrm{sin}^2\alpha } \end{aligned}$$
(A.4)
$$\begin{aligned} \omega _2= & {} \sqrt{8(p\mathrm{cos}\alpha -1)-8i_0^2\mathrm{cos}^2\alpha } \end{aligned}$$
(A.5)
$$\begin{aligned} \gamma _1= & {} 48i_0\mathrm{sin}^2\alpha \mathrm{cos}\alpha \end{aligned}$$
(A.6)
$$\begin{aligned} \gamma _2= & {} -48(2+i_0^2)\mathrm{sin}^2\alpha \mathrm{cos}^2\alpha \end{aligned}$$
(A.7)
$$\begin{aligned} \gamma _3= & {} -16\mathrm{cos}^4\alpha -16(1+i_0^2)\mathrm{sin}^4\alpha \end{aligned}$$
(A.8)
$$\begin{aligned} \gamma _4= & {} 24i_0\mathrm{sin}^2\alpha \mathrm{cos}\alpha \end{aligned}$$
(A.9)
$$\begin{aligned} \gamma _5= & {} 24i_0\mathrm{cos}^3\alpha \end{aligned}$$
(A.10)
$$\begin{aligned} \gamma _6= & {} -48(2+i_0^2)\mathrm{sin}^2\alpha \mathrm{cos}^2\alpha \end{aligned}$$
(A.11)
$$\begin{aligned} \gamma _7= & {} -16(1+i_0^2)\mathrm{cos}^4\alpha -16\mathrm{sin}^4\alpha \end{aligned}$$
(A.12)
$$\begin{aligned} \alpha _1= & {} 16pi_0\mathrm{sin}^2\alpha \end{aligned}$$
(A.13)
$$\begin{aligned} \alpha _2= & {} 16di_0\mathrm{sin}^2\alpha \end{aligned}$$
(A.14)
$$\begin{aligned} \alpha _3= & {} 8p\mathrm{cos}\alpha \end{aligned}$$
(A.15)
$$\begin{aligned} \alpha _4= & {} -8d\mathrm{cos}\alpha \end{aligned}$$
(A.16)
$$\begin{aligned} \alpha _5= & {} -24d\mathrm{cos}^3\alpha \end{aligned}$$
(A.17)
$$\begin{aligned} \alpha _6= & {} -24p\mathrm{cos}^3\alpha \end{aligned}$$
(A.18)
$$\begin{aligned} \alpha _7= & {} -48p\mathrm{sin}^2\alpha \mathrm{cos}\alpha \end{aligned}$$
(A.19)
$$\begin{aligned} \alpha _8= & {} -48d\mathrm{sin}^2\alpha \mathrm{cos}\alpha \end{aligned}$$
(A.20)
$$\begin{aligned} \alpha _9= & {} 8d^2\mathrm{cos}^2\alpha \end{aligned}$$
(A.21)
$$\begin{aligned} \alpha _{10}= & {} 16pd\mathrm{cos}^2\alpha \end{aligned}$$
(A.22)
$$\begin{aligned} \alpha _{11}= & {} 8d^2\mathrm{sin}^2\alpha \end{aligned}$$
(A.23)
$$\begin{aligned} \alpha _{12}= & {} 8p^2\mathrm{sin}^2\alpha \end{aligned}$$
(A.24)
$$\begin{aligned} \alpha _{13}= & {} 16pd\mathrm{sin}^2\alpha \end{aligned}$$
(A.25)
$$\begin{aligned} \alpha _{14}= & {} 8p^2\mathrm{cos}^2\alpha \end{aligned}$$
(A.26)
$$\begin{aligned} \alpha _{15}= & {} -24d\mathrm{sin}^2\alpha \mathrm{cos}\alpha \end{aligned}$$
(A.27)
$$\begin{aligned} \alpha _{16}= & {} -24p\mathrm{sin}^2\alpha \mathrm{cos}\alpha \end{aligned}$$
(A.28)
$$\begin{aligned} \beta _1= & {} 16pi_0\mathrm{cos}^2\alpha \end{aligned}$$
(A.29)
$$\begin{aligned} \beta _2= & {} 16di_0\mathrm{cos}^2\alpha \end{aligned}$$
(A.30)
$$\begin{aligned} \beta _3= & {} 8p\mathrm{cos}\alpha \end{aligned}$$
(A.31)
$$\begin{aligned} \beta _4= & {} -8d\mathrm{cos}\alpha \end{aligned}$$
(A.32)
$$\begin{aligned} \beta _5= & {} -24p\mathrm{sin}^2\alpha \mathrm{cos}\alpha \end{aligned}$$
(A.33)
$$\begin{aligned} \beta _6= & {} -24d\mathrm{sin}^2\alpha \mathrm{cos}\alpha \end{aligned}$$
(A.34)
$$\begin{aligned} \beta _7= & {} -48d\mathrm{sin}^2\alpha \mathrm{cos}\alpha \end{aligned}$$
(A.35)
$$\begin{aligned} \beta _8= & {} -48p\mathrm{sin}^2\alpha \mathrm{cos}\alpha \end{aligned}$$
(A.36)
$$\begin{aligned} \beta _9= & {} -24p\mathrm{cos}^3\alpha \end{aligned}$$
(A.37)
$$\begin{aligned} \beta _{10}= & {} -24d\mathrm{cos}^3\alpha \end{aligned}$$
(A.38)
$$\begin{aligned} \beta _{11}= & {} 8d^2\mathrm{sin}^2\alpha \end{aligned}$$
(A.39)
$$\begin{aligned} \beta _{12}= & {} 16pd\mathrm{sin}^2\alpha \end{aligned}$$
(A.40)
$$\begin{aligned} \beta _{13}= & {} 8d^2\mathrm{cos}^2\alpha \end{aligned}$$
(A.41)
$$\begin{aligned} \beta _{14}= & {} 8p^2\mathrm{cos}^2\alpha \end{aligned}$$
(A.42)
$$\begin{aligned} \beta _{15}= & {} 16pd\mathrm{cos}^2\alpha \end{aligned}$$
(A.43)
$$\begin{aligned} \beta _{16}= & {} 8p^2\mathrm{sin}^2\alpha \end{aligned}$$
(A.44)

Appendix

$$\begin{aligned} \varGamma _{11}&= \mathrm{j}\omega _1{\hat{\mu }}_1-{\hat{\alpha }}_3+{\hat{\alpha }}_3\mathrm{e}^{-\mathrm{j}\omega _1\tau _1}-\mathrm{j}\omega _1{\hat{\alpha }}_4\mathrm{e}^{-\mathrm{j}\omega _1\tau _2} \end{aligned}$$
(B.1)
$$\begin{aligned} \varGamma _{12}=&\,\frac{2{\hat{\gamma }}_1{\hat{\gamma }}_4}{\omega _2^2}-\frac{{\hat{\gamma }}_1{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}-3{\hat{\gamma }}_3-\frac{2{\hat{\alpha }}_1{\hat{\gamma }}_4}{\omega _2^2}\nonumber \\&+\frac{{\hat{\alpha }}_1{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _1}+\frac{2\mathrm{j}\omega _1{\hat{\alpha }}_2{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _2}\nonumber \\&-\mathrm{j}\omega _1{\hat{\alpha }}_5\mathrm{e}^{\mathrm{j}\omega _1\tau _2}+2\mathrm{j}\omega _1{\hat{\alpha }}_5\mathrm{e}^{-\mathrm{j}\omega _1\tau _2}+{\hat{\alpha }}_6\mathrm{e}^{\mathrm{j}\omega _1\tau _1}\nonumber \\&+2{\hat{\alpha }}_6\mathrm{e}^{-\mathrm{j}\omega _1\tau _1}+2{\hat{\alpha }}_9\omega _1^2-{\hat{\alpha }}_9\omega _1^2\mathrm{e}^{-2\mathrm{j}\omega _1\tau _2}\nonumber \\&-\mathrm{j}\omega _1{\hat{\alpha }}_{10}\mathrm{e}^{-\mathrm{j}\omega _1\left( \tau _1-\tau _2\right) }+\mathrm{j}\omega _1{\hat{\alpha }}_{10}\mathrm{e}^{\mathrm{j}\omega _1\left( \tau _1-\tau _2\right) }\nonumber \\&+\mathrm{j}\omega _1{\hat{\alpha }}_{10}\mathrm{e}^{-\mathrm{j}\omega _1\left( \tau _1+\tau _2\right) }+2{\hat{\alpha }}_{14}+{\hat{\alpha }}_{14}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _1} \end{aligned}$$
(B.2)
$$\begin{aligned} \varGamma _{13}=&\frac{2{\hat{\gamma }}_1{\hat{\gamma }}_5-2{\hat{\gamma }}_1{\hat{\beta }}_1\mathrm{cos}\left( \omega _2\tau _1\right) -2\omega _2{\hat{\gamma }}_1{\hat{\beta }}_2\mathrm{sin}\left( \omega _2\tau _2\right) }{\omega _2^2}\nonumber \\&-\frac{{\hat{\gamma }}_1^2-{\hat{\gamma }}_1{\hat{\alpha }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\gamma }}_1{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2\left( 2\omega _1+\omega _2\right) }-2{\hat{\gamma }}_2\nonumber \\&-\frac{{\hat{\gamma }}_1^2-{\hat{\gamma }}_1{\hat{\alpha }}_1\mathrm{e}^{\mathrm{j}\omega _2\tau _1}+\mathrm{j}\omega _2{\hat{\gamma }}_1{\hat{\alpha }}_2\mathrm{e}^{\mathrm{j}\omega _2\tau _2}}{\omega _2\left( 2\omega _1+\omega _2\right) }+{\hat{\alpha }}_7\mathrm{e}^{\mathrm{j}\omega _2\tau _1}\nonumber \\&-\frac{2{\hat{\alpha }}_1{\hat{\gamma }}_5-2{\hat{\alpha }}_1{\hat{\beta }}_1\mathrm{cos}\left( \omega _2\tau _1\right) -2\omega _2{\hat{\alpha }}_1{\hat{\beta }}_2\mathrm{sin}\left( \omega _2\tau _2\right) }{\omega _2^2}\nonumber \\&+\frac{{\hat{\alpha }}_1{\hat{\gamma }}_1-{\hat{\alpha }}_1^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_1{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2\left( 2\omega _1+\omega _2\right) }\mathrm{e}^{\mathrm{j}\omega _2\tau _1}\nonumber \\&+\frac{{\hat{\alpha }}_1{\hat{\gamma }}_1-{\hat{\alpha }}_1^2\mathrm{e}^{\mathrm{j}\omega _2\tau _1}+\mathrm{j}\omega _2{\hat{\alpha }}_1{\hat{\alpha }}_2\mathrm{e}^{\mathrm{j}\omega _2\tau _2}}{\omega _2\left( \omega _2-2\omega _1\right) }\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}\nonumber \\&-\mathrm{j}\omega _2\frac{{\hat{\alpha }}_2{\hat{\gamma }}_1-{\hat{\alpha }}_1{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_2^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2\left( 2\omega _1+\omega _2\right) }\mathrm{e}^{\mathrm{j}\omega _2\tau _2}\nonumber \\&+\mathrm{j}\omega _2\frac{{\hat{\alpha }}_2{\hat{\gamma }}_1-{\hat{\alpha }}_1{\hat{\alpha }}_2\mathrm{e}^{\mathrm{j}\omega _2\tau _1}+\mathrm{j}\omega _2{\hat{\alpha }}_2^2\mathrm{e}^{\mathrm{j}\omega _2\tau _2}}{\omega _2\left( \omega _2-2\omega _1\right) }\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}\nonumber \\&+{\hat{\alpha }}_7\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_8\mathrm{e}^{\mathrm{j}\omega _2\tau _2}+\mathrm{j}\omega _2{\hat{\alpha }}_8\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}\nonumber \\&+2{\hat{\alpha }}_{11}\omega _2^2+2{\hat{\alpha }}_{12}-\mathrm{j}\omega _2{\hat{\alpha }}_{13}\mathrm{e}^{\mathrm{j}\omega _2\left( \tau _2-\tau _1\right) }+2{\hat{\alpha }}_{16}\mathrm{e}^{-\mathrm{j}\omega _1\tau _1}\nonumber \\&+\mathrm{j}\omega _2{\hat{\alpha }}_{13}\mathrm{e}^{\mathrm{j}\omega _2\left( \tau _1-\tau _2\right) }+2\mathrm{j}\omega _1{\hat{\alpha }}_{15}\mathrm{e}^{-\mathrm{j}\omega _1\tau _2} \end{aligned}$$
(B.3)
$$\begin{aligned} \varGamma _{14}=&-\frac{{\hat{\gamma }}_1{\hat{\gamma }}_5-{\hat{\gamma }}_1{\hat{\beta }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\gamma }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}+{\hat{\alpha }}_7\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}\nonumber \\&-\frac{{\hat{\gamma }}_1^2-{\hat{\gamma }}_1{\hat{\alpha }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\gamma }}_1{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2\left( 2\omega _1+\omega _2\right) }+\mathrm{j}\omega _2{\hat{\alpha }}_8\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}\nonumber \\&+\frac{{\hat{\alpha }}_1{\hat{\gamma }}_5-{\hat{\alpha }}_1{\hat{\beta }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _1}-{\hat{\gamma }}_2\nonumber \\&+\frac{{\hat{\alpha }}_1{\hat{\gamma }}_1-{\hat{\alpha }}_1^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_1{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2\left( 2\omega _1+\omega _2\right) }\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}\nonumber \\&+2\mathrm{j}\omega _2\frac{{\hat{\alpha }}_2{\hat{\alpha }}_5-{\hat{\alpha }}_2{\hat{\beta }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_2{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _2}\nonumber \\&+\mathrm{j}\omega _2\frac{{\hat{\alpha }}_2{\hat{\gamma }}_1-{\hat{\alpha }}_1{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_2^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2\left( 2\omega _1+\omega _2\right) }\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}\nonumber \\&-{\hat{\alpha }}_{11}\omega _2^2\mathrm{e}^{-2\mathrm{j}\omega _2\tau _2}+{\hat{\alpha }}_{12}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _1}+\mathrm{j}\omega _2{\hat{\alpha }}_{13}\mathrm{e}^{-\mathrm{j}\omega _2\left( \tau _1+\tau _2\right) }\nonumber \\&+\mathrm{j}\omega _1{\hat{\alpha }}_{15}\mathrm{e}^{-\mathrm{j}\omega _1\tau _2}+{\hat{\alpha }}_{16}\mathrm{e}^{-\mathrm{j}\omega _1\tau _1} \end{aligned}$$
(B.4)
$$\begin{aligned} \varGamma _{15}=&-\frac{{\hat{\gamma }}_1{\hat{\gamma }}_5-{\hat{\gamma }}_1{\hat{\beta }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\gamma }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\nonumber \\&+{\hat{\alpha }}_7\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}\nonumber \\&-\frac{{\hat{\gamma }}_1^2-{\hat{\gamma }}_1{\hat{\alpha }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\gamma }}_1{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2\left( \omega _2-2\omega _1\right) }\nonumber \\&+\mathrm{j}\omega _2{\hat{\alpha }}_8\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}\nonumber \\&+\frac{{\hat{\alpha }}_1{\hat{\gamma }}_5-{\hat{\alpha }}_1{\hat{\beta }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\nonumber \\&\times \mathrm{e}^{-2\mathrm{j}\omega _2\tau _1}\nonumber \\&+\frac{{\hat{\alpha }}_1{\hat{\gamma }}_1-{\hat{\alpha }}_1^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_1{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2\left( \omega _2-2\omega _1\right) }\nonumber \\&\times \mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-{\hat{\gamma }}_2\nonumber \\&+2\mathrm{j}\omega _2\frac{{\hat{\alpha }}_2{\hat{\gamma }}_5-{\hat{\alpha }}_2{\hat{\beta }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_2{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\nonumber \\&\times \mathrm{e}^{-2\mathrm{j}\omega _2\tau _2}\nonumber \\&+\mathrm{j}\omega _2\frac{{\hat{\alpha }}_2{\hat{\gamma }}_1-{\hat{\alpha }}_1{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\alpha }}_2^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2\left( \omega _2-2\omega _1\right) }\nonumber \\&\times \mathrm{e}^{-\mathrm{j}\omega _2\tau _2}-{\hat{\alpha }}_{11}\omega _2^2\mathrm{e}^{-2\mathrm{j}\omega _2\tau _2}+{\hat{\alpha }}_{12}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _1}\nonumber \\&+\mathrm{j}\omega _2{\hat{\alpha }}_{13}\mathrm{e}^{-\mathrm{j}\omega _2\left( \tau _1+\tau _2\right) }-\mathrm{j}\omega _1{\hat{\alpha }}_{15}\mathrm{e}^{\mathrm{j}\omega _1\tau _2}\nonumber \\&+{\hat{\alpha }}_{16}\mathrm{e}^{\mathrm{j}\omega _1\tau _1} \end{aligned}$$
(B.5)
$$\begin{aligned} \varGamma _{16}=&-\frac{{\hat{\gamma }}_1{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}-{\hat{\gamma }}_3+\frac{{\hat{\alpha }}_1{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _1}\nonumber \\&+\mathrm{j}\omega _1{\hat{\alpha }}_5\mathrm{e}^{-\mathrm{j}\omega _1\tau _2}+2\mathrm{j}\omega _1\frac{{\hat{\alpha }}_2{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _2}\nonumber \\&+{\hat{\alpha }}_6\mathrm{e}^{-\mathrm{j}\omega _1\tau _1}-{\hat{\alpha }}_9\omega _1^2\mathrm{e}^{-2\mathrm{j}\omega _1\tau _2}\nonumber \\&+\mathrm{j}\omega _1{\hat{\alpha }}_{10}\mathrm{e}^{-\mathrm{j}\omega _1\left( \tau _1+\tau _2\right) }+{\hat{\alpha }}_{14}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _1} \end{aligned}$$
(B.6)
$$\begin{aligned} \varGamma _{21}=&\mathrm{j}\omega _2{\hat{\mu }}_1-\mathrm{j}\omega _2{\hat{\beta }}_4\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}+{\hat{\beta }}_3\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-{\hat{\beta }}_3 \end{aligned}$$
(B.7)
$$\begin{aligned} \varGamma _{22}=&-4\frac{{\hat{\gamma }}_1{\hat{\gamma }}_4-{\hat{\gamma }}_4{\hat{\alpha }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\gamma }}_4{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2^2-4\omega _1^2}+\frac{4{\hat{\gamma }}_4{\hat{\gamma }}_5}{\omega _2^2}\nonumber \\&-2{\hat{\gamma }}_6-\frac{2{\hat{\beta }}_1{\hat{\gamma }}_4}{\omega _2^2}-\frac{2{\hat{\beta }}_1{\hat{\gamma }}_4}{\omega _2^2}\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-2\mathrm{j}\omega _2\frac{{\hat{\beta }}_2{\hat{\gamma }}_4}{\omega _2^2}\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}\nonumber \\&+2{\hat{\beta }}_5\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}+2\mathrm{j}\omega _2{\hat{\beta }}_6\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}-\mathrm{j}\omega _1{\hat{\beta }}_7\mathrm{e}^{\mathrm{j}\omega _1\tau _2}\nonumber \\&+\mathrm{j}\omega _1{\hat{\beta }}_7\mathrm{e}^{-\mathrm{j}\omega _1\tau _2}+{\hat{\beta }}_8\mathrm{e}^{\mathrm{j}\omega _1\tau _1}+{\hat{\beta }}_8\mathrm{e}^{{-\mathrm j}\omega _1\tau _1}+2{\hat{\beta }}_{11}\omega _1^2\nonumber \\&-\mathrm{j}\omega _1{\hat{\beta }}_{12}\mathrm{e}^{\mathrm{j}\omega _1\left( \tau _2-\tau _1\right) }+\mathrm{j}\omega _1{\hat{\beta }}_{12}\mathrm{e}^{\mathrm{j}\omega _1\left( \tau _1-\tau _2\right) }+2{\hat{\beta }}_{16} \end{aligned}$$
(B.8)
$$\begin{aligned} \varGamma _{23}=&4\frac{{\hat{\gamma }}_5^2-{\hat{\gamma }}_5{\hat{\beta }}_1\mathrm{cos}\left( \omega _2\tau _1\right) -\omega _2{\hat{\gamma }}_5{\hat{\beta }}_2\mathrm{sin}\left( \omega _2\tau _2\right) }{\omega _2^2}-3{\hat{\gamma }}_7\nonumber \\&-2\frac{{\hat{\gamma }}_5^2-{\hat{\gamma }}_5{\hat{\beta }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\gamma }}_5{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}+{\hat{\beta }}_9\mathrm{e}^{\mathrm{j}\omega _2\tau _1}\nonumber \\&-2\frac{{\hat{\beta }}_1{\hat{\beta }}_5-{\hat{\beta }}_1^2\mathrm{cos}\left( \omega _2\tau _1\right) -\omega _2{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{sin}\left( \omega _2\tau _2\right) }{\omega _2^2}\nonumber \\&+\frac{{\hat{\beta }}_1{\hat{\gamma }}_5-{\hat{\beta }}_1^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _1}\nonumber \\&+\frac{{\hat{\beta }}_1{\hat{\gamma }}_5-{\hat{\beta }}_1^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\mathrm{e}^{\mathrm{j}\omega _2\tau _1}\nonumber \\&-\frac{{\hat{\beta }}_1{\hat{\gamma }}_5-{\hat{\beta }}_1^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2^2}\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}\nonumber \\&-\frac{{\hat{\beta }}_1{\hat{\gamma }}_5-{\hat{\beta }}_1^2\mathrm{e}^{\mathrm{j}\omega _2\tau _1}+\mathrm{j}\omega _2{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{\mathrm{j}\omega _2\tau _2}}{\omega _2^2}\nonumber \\&\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}+2{\hat{\beta }}_9\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}\nonumber \\&-2\mathrm{j}\omega _2\frac{{\hat{\beta }}_2{\hat{\gamma }}_5-{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_2^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _2}\nonumber \\&-\mathrm{j}\omega _2\frac{{\hat{\beta }}_2{\hat{\gamma }}_5-{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_2^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\mathrm{e}^{\mathrm{j}\omega _2\tau _2}\nonumber \\&-\mathrm{j}\omega _2\frac{{\hat{\beta }}_2{\hat{\gamma }}_5-{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_2^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2^2}\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}\nonumber \\&-\mathrm{j}\omega _2\frac{{\hat{\beta }}_2{\hat{\gamma }}_5-{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{\mathrm{j}\omega _2\tau _1}+\mathrm{j}\omega _2{\hat{\beta }}_2^2\mathrm{e}^{\mathrm{j}\omega _2\tau _2}}{\omega _2^2}\nonumber \\&\times \mathrm{e}^{-\mathrm{j}\omega _2\tau _2}+2\omega _2^2{\hat{\beta }}_{13}\nonumber \\&-\mathrm{j}\omega _2{\hat{\beta }}_{10}\mathrm{e}^{\mathrm{j}\omega _2\tau _2}+2\mathrm{j}\omega _2{\hat{\beta }}_{10}\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}-\omega _2^2{\hat{\beta }}_{13}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _2}\nonumber \\&+2{\hat{\beta }}_{14}+{\hat{\beta }}_{14}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_{15}\mathrm{e}^{\mathrm{j}\omega _2\left( \tau _2-\tau _1\right) }\nonumber \\&+\mathrm{j}\omega _2{\hat{\beta }}_{15}\mathrm{e}^{\mathrm{j}\omega _2\left( \tau _1-\tau _2\right) }+\mathrm{j}\omega _2{\hat{\beta }}_{15}\mathrm{e}^{-\mathrm{j}\omega _2\left( \tau _2+\tau _1\right) } \end{aligned}$$
(B.9)
$$\begin{aligned} \varGamma _{24}=&-2\frac{{\hat{\gamma }}_1{\hat{\gamma }}_4-{\hat{\gamma }}_4{\hat{\alpha }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\gamma }}_4{\hat{\alpha }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{\omega _2\left( 2\omega _1+\omega _2\right) }\nonumber \\&-\frac{2{\hat{\gamma }}_4{\hat{\gamma }}_5}{4\omega _1^2-\omega _2^2}+\frac{{\hat{\beta }}_1{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _1}+\frac{{\hat{\beta }}_1{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\nonumber \\&\times \mathrm{e}^{-\mathrm{j}\omega _2\tau _1}+{\hat{\beta }}_5\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}\nonumber \\&+2\mathrm{j}\omega _1\frac{{\hat{\beta }}_2{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _2}+\mathrm{j}\omega _2\frac{{\hat{\beta }}_2{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\nonumber \\&\times \mathrm{e}^{-\mathrm{j}\omega _2\tau _2}-{\hat{\gamma }}_6+\mathrm{j}\omega _2{\hat{\beta }}_6\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}+\mathrm{j}\omega _1{\hat{\beta }}_7\mathrm{e}^{-\mathrm{j}\omega _1\tau _2}\nonumber \\&+\mathrm{j}\omega _1{\hat{\beta }}_{12}\mathrm{e}^{-\mathrm{j}\omega _1\left( \tau _1+\tau _2\right) }+{\hat{\beta }}_8\mathrm{e}^{-\mathrm{j}\omega _1\tau _1}-{\hat{\beta }}_{11}\omega _1^2\mathrm{e}^{-2\mathrm{j}\omega _1\tau _2}\nonumber \\&+{\hat{\beta }}_{16}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _1} \end{aligned}$$
(B.10)
$$\begin{aligned} \varGamma _{25}=&-2\frac{{\hat{\gamma }}_1{\hat{\gamma }}_4-{\hat{\gamma }}_4{\hat{\alpha }}_1\mathrm{e}^{\mathrm{j}\omega _2\tau _1}+\mathrm{j}\omega _2{\hat{\gamma }}_4{\hat{\alpha }}_2\mathrm{e}^{\mathrm{j}\omega _2\tau _2}}{\omega _2\left( \omega _2-2\omega _1\right) }\nonumber \\&+\frac{{\hat{\beta }}_1{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\mathrm{e}^{\mathrm{j}\omega _2\tau _1}+\frac{{\hat{\beta }}_1{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _1}\nonumber \\&-\frac{2{\hat{\gamma }}_4{\hat{\gamma }}_5}{4\omega _1^2-\omega _2^2}-\mathrm{j}\omega _2\frac{{\hat{\beta }}_2{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\mathrm{e}^{\mathrm{j}\omega _2\tau _2}\nonumber \\&+2\mathrm{j}\omega _1\frac{{\hat{\beta }}_2{\hat{\gamma }}_4}{4\omega _1^2-\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _2}-{\hat{\gamma }}_6+{\hat{\beta }}_5\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}\nonumber \\&+\mathrm{j}\omega _2{\hat{\beta }}_6\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}+\mathrm{j}\omega _1{\hat{\beta }}_7\mathrm{e}^{-\mathrm{j}\omega _1\tau _2}\nonumber \\&+{\hat{\beta }}_8\mathrm{e}^{-\mathrm{j}\omega _1\tau _1}-{\hat{\beta }}_{11}\omega _1^2\mathrm{e}^{-2\mathrm{j}\omega _1\tau _2}\nonumber \\&+\mathrm{j}\omega _1{\hat{\beta }}_{12}\mathrm{e}^{-\mathrm{j}\omega _1\left( \tau _1+\tau _2\right) }+{\hat{\beta }}_{16}\mathrm{e}^{-2\mathrm{j}\omega _1\tau _1} \end{aligned}$$
(B.11)
$$\begin{aligned} \varGamma _{26}=&-2\frac{{\hat{\gamma }}_5^2-{\hat{\gamma }}_5{\hat{\beta }}_1\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\gamma }}_5{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\nonumber \\&-{\hat{\gamma }}_7+{\hat{\beta }}_9\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}\nonumber \\&+\frac{{\hat{\beta }}_1{\hat{\gamma }}_5-{\hat{\beta }}_1^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _1}\nonumber \\&+\frac{{\hat{\beta }}_1{\hat{\gamma }}_5-{\hat{\beta }}_1^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}\nonumber \\&+2\mathrm{j}\omega _2\frac{{\hat{\beta }}_2{\hat{\gamma }}_5-{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_2^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _2}\nonumber \\&+\mathrm{j}\omega _2\frac{{\hat{\beta }}_2{\hat{\gamma }}_5-{\hat{\beta }}_1{\hat{\beta }}_2\mathrm{e}^{-\mathrm{j}\omega _2\tau _1}-\mathrm{j}\omega _2{\hat{\beta }}_2^2\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}}{3\omega _2^2}\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}\nonumber \\&+\mathrm{j}\omega _2{\hat{\beta }}_{10}\mathrm{e}^{-\mathrm{j}\omega _2\tau _2}-\omega _2^2{\hat{\beta }}_{13}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _2}+{\hat{\beta }}_{14}\mathrm{e}^{-2\mathrm{j}\omega _2\tau _1}\nonumber \\&+\mathrm{j}\omega _2{\hat{\beta }}_{15}\mathrm{e}^{-\mathrm{j}\omega _2\left( \tau _1+\tau _2\right) } \end{aligned}$$
(B.12)

Appendix

$$\begin{aligned} \varLambda _1=&-\omega _1\mu _1+\alpha _3\mathrm{sin}\left( \omega _1\tau _1\right) +\omega _1\alpha _4\mathrm{cos}\left( \omega _1\tau _2\right) \end{aligned}$$
(C.1)
$$\begin{aligned} \varXi _1=&-\alpha _3\mathrm{cos}\left( \omega _1\tau _1\right) +\alpha _3+\omega _1\alpha _4\mathrm{sin}\left( \omega _1\tau _2\right) \end{aligned}$$
(C.2)
$$\begin{aligned} \varLambda _2=&-\frac{\alpha _1\gamma _4}{4\omega _1^2-\omega _2^2}\mathrm{sin}\left( 2\omega _1\tau _1\right) +\frac{2\omega _1\alpha _2\gamma _4}{4\omega _1^2-\omega _2^2}\nonumber \\&\times \mathrm{cos}\left( 2\omega _1\tau _2\right) +\omega _1\alpha _5\mathrm{cos}\left( \omega _1\tau _2\right) -\alpha _6\mathrm{sin}\left( \omega _1\tau _1\right) \nonumber \\&+\alpha _9\omega _1^2\mathrm{sin}\left( 2\omega _1\tau _2\right) +\omega _1\alpha _{10}\mathrm{cos}\left( \omega _1\tau _1+\omega _1\tau _2\right) \nonumber \\&-\alpha _{14}\mathrm{sin}\left( 2\omega _1\tau _1\right) \end{aligned}$$
(C.3)
$$\begin{aligned} \varXi _2=&-\frac{\gamma _1\gamma _4}{4\omega _1^2-\omega _2^2}+\frac{2\gamma _1\gamma _4}{\omega _2^2}-3\gamma _3+\frac{\alpha _1\gamma _4}{4\omega _1^2-\omega _2^2}\nonumber \\&\times \mathrm{cos}\left( 2\omega _1\tau _1\right) -\frac{2\alpha _1\gamma _4}{\omega _2^2}+\frac{2\omega _1\alpha _2\gamma _4}{4\omega _1^2-\omega _2^2}\mathrm{sin}\left( 2\omega _1\tau _2\right) \nonumber \\&+3\omega _1\alpha _5\mathrm{sin}\left( \omega _1\tau _2\right) +3\alpha _6\mathrm{cos}\left( \omega _1\tau _1\right) +2\alpha _9\omega _1^2\nonumber \\&-\alpha _9\omega _1^2\mathrm{cos}\left( 2\omega _1\tau _2\right) +2\alpha _{14}\nonumber \\&-2\omega _1\alpha _{10}\mathrm{sin}\left( \omega _1\tau _1-\omega _1\tau _2\right) \nonumber \\&+\omega _1\alpha _{10}\mathrm{sin}\left( \omega _1\tau _1+\omega _1\tau _2\right) +\alpha _{14}\mathrm{cos}\left( 2\omega _1\tau _1\right) \end{aligned}$$
(C.4)
$$\begin{aligned} \varLambda _3=&\alpha _{15}\omega _1\mathrm{cos}\left( \omega _1\tau _2\right) -\alpha _{16}\mathrm{sin}\left( \omega _1\tau _1\right) \end{aligned}$$
(C.5)
$$\begin{aligned} \varXi _3=&\frac{\gamma _1\gamma _5}{\omega _2^2}-\frac{\gamma _1\beta _1}{\omega _2^2}\mathrm{cos}\left( \omega _2\tau _1\right) -\frac{\gamma _1\beta _2}{\omega _2}\mathrm{sin}\left( \omega _2\tau _2\right) \nonumber \\&+\frac{\gamma _1^2}{4\omega _1^2-\omega _2^2}-\frac{2\gamma _1\alpha _1}{4\omega _1^2-\omega _2^2}\mathrm{cos}\left( \omega _2\tau _1\right) \nonumber \\&-\frac{2\omega _2\gamma _1\alpha _2}{4\omega _1^2-\omega _2^2}\mathrm{sin}\left( \omega _2\tau _2\right) -\frac{\alpha _1\gamma _5}{\omega _2^2}-\gamma _2\nonumber \\&+\frac{\alpha _1\beta _1}{\omega _2^2}\mathrm{cos}\left( \omega _2\tau _1\right) +\frac{\alpha _1\beta _2}{\omega _2}\mathrm{sin}\left( \omega _2\tau _2\right) \nonumber \\&+\frac{\alpha _1^2}{4\omega _1^2-\omega _2^2+\frac{2\omega _2\alpha _1\alpha _2}{4\omega _1^2-\omega _2^2}\mathrm{sin}\left( \omega _2\tau _2-\omega _2\tau _1\right) }\nonumber \\&+\frac{\omega _2^2\alpha _2^2}{4\omega _1^2-\omega _2^2}+\alpha _{11}\omega _2^2+\alpha _7\mathrm{cos}\left( \omega _2\tau _1\right) \nonumber \\&+\alpha _8\omega _2\mathrm{sin}\left( \omega _2\tau _2\right) +\alpha _{15}\omega _1\mathrm{sin}\left( \omega _1\tau _2\right) +\alpha _{12}\nonumber \\&-\alpha _{13}\omega _2\mathrm{sin}\left( \omega _2\tau _1-\omega _2\tau _2\right) +\alpha _{16}\mathrm{cos}\left( \omega _1\tau _1\right) \end{aligned}$$
(C.6)
$$\begin{aligned} \varLambda _4=&-\frac{\gamma _1\beta _1}{3\omega _2^2}\mathrm{sin}\left( \omega _2\tau _1\right) +\frac{\gamma _1\beta _2}{3\omega _2}\left( \omega _2\tau _2\right) -\frac{\alpha _1\gamma _5}{3\omega _2^2}\mathrm{sin}\left( 2\omega _2\tau _1\right) \nonumber \\&-\frac{2\gamma _1\alpha _1}{\omega _2\left( \omega _2-2\omega _1\right) }\mathrm{sin}\left( \omega _2\tau _1\right) -\frac{\alpha _1\beta _2}{3\omega _2}\mathrm{cos}\left( 2\omega _2\tau _1+\omega _2\tau _2\right) \nonumber \\&+\frac{\alpha _1\beta _1}{3\omega _2^2}\mathrm{sin}\left( 3\omega _2\tau _1\right) -\frac{2\alpha _1\alpha _2}{\omega _2-2\omega _1}\mathrm{cos}\left( \omega _2\tau _1+\omega _2\tau _2\right) \nonumber \\&+\frac{\alpha _1^2}{\omega _2\left( \omega _2-2\omega _1\right) }\mathrm{sin}\left( 2\omega _2\tau _1\right) -\frac{\omega _2\alpha _2^2}{\omega _2-2\omega _1}\mathrm{sin}\left( 2\omega _2\tau _2\right) \nonumber \\&-\frac{2\alpha _2\beta _1}{3\omega _2}\mathrm{cos}\left( \omega _2\tau _1+2\omega _2\tau _1\right) +\frac{2\alpha _2\gamma _5}{3\omega _2}\mathrm{cos}\left( 2\omega _2\tau _2\right) \nonumber \\&-\frac{2\alpha _2\beta _2}{3}\mathrm{sin}\left( 3\omega _2\tau _2\right) -\alpha _7\mathrm{sin}\left( \omega _2\tau _1\right) -\alpha _{15}\omega _1\mathrm{cos}\left( \omega _1\tau _2\right) \nonumber \\&+\alpha _{11}\omega _2^2\mathrm{sin}\left( 2\omega _2\tau _2\right) +\alpha _8\omega _2\mathrm{cos}\left( \omega _2\tau _2\right) -\alpha _{12}\mathrm{sin}\left( 2\omega _2\tau _1\right) \nonumber \\&+\alpha _{13}\omega _2\mathrm{cos}\left( \omega _2\tau _1+\omega _2\tau _2\right) +\alpha _{16}\mathrm{sin}\left( \omega _1\tau _1\right) \end{aligned}$$
(C.7)
$$\begin{aligned} \varXi _4=&+\frac{\gamma _1\beta _1}{3\omega _2^2}\mathrm{cos}\left( \omega _2\tau _1\right) +\frac{\gamma _1\beta _2}{3\omega _2}\mathrm{sin}\left( \omega _2\tau _2\right) +\frac{\gamma _1^2}{\omega _2\left( 2\omega _1-\omega _2\right) }\nonumber \\&-\gamma _2+\frac{2\gamma _1\alpha _1}{\omega _2\left( \omega _2-2\omega _1\right) }\mathrm{cos}\left( \omega _2\tau _1\right) +\frac{2\gamma _1\alpha _2}{\omega _2-2\omega _1}\mathrm{sin}\left( \omega _2\tau _2\right) \nonumber \\&-\frac{\gamma _1\gamma _5}{3\omega _2^2}+\frac{\alpha _1\gamma _5}{3\omega _2^2}\mathrm{cos}\left( 2\omega _2\tau _1\right) -\frac{\alpha _1\beta _2}{3\omega _2}\mathrm{sin}\left( 2\omega _2\tau _1+\omega _2\tau _2\right) \nonumber \\&-\frac{\alpha _1\beta _1}{3\omega _2^2}\mathrm{cos}\left( 3\omega _2\tau _1\right) -\frac{2\alpha _1\alpha _2}{\omega _2-2\omega _1}\mathrm{sin}\left( \omega _2\tau _1+\omega _2\tau _2\right) \nonumber \\&-\frac{\alpha _1^2}{\omega _2\left( \omega _2-2\omega _1\right) }\mathrm{cos}\left( 2\omega _2\tau _1\right) +\frac{2\alpha _2\gamma _5}{3\omega _2}\mathrm{sin}\left( 2\omega _2\tau _2\right) \nonumber \\&-\frac{2\alpha _2\beta _1}{3\omega _2}\mathrm{sin}\left( \omega _2\tau _1+2\omega _2\tau _2\right) +\frac{\omega _2\alpha _2^2}{\omega _2-2\omega _1}\mathrm{cos}\left( 2\omega _2\tau _2\right) \nonumber \\&+\frac{2\alpha _2\beta _2}{3}\mathrm{cos}\left( 3\omega _2\tau _2\right) +\alpha _7\mathrm{cos}\left( \omega _2\tau _1\right) +\alpha _8\omega _2\mathrm{sin}\left( \omega _2\tau _2\right) \nonumber \\&-\alpha _{11}\omega _2^2\mathrm{cos}\left( 2\omega _2\tau _2\right) +\alpha _{12}\mathrm{cos}\left( 2\omega _2\tau _1\right) +\alpha _{16}\mathrm{cos}\left( \omega _1\tau _1\right) \nonumber \\&+\alpha _{13}\omega _2\mathrm{cos}\left( \omega _2\tau _1+\omega _2\tau _2\right) +\alpha _{15}\omega _1\mathrm{sin}\left( \omega _1\tau _2\right) \end{aligned}$$
(C.8)
$$\begin{aligned} \varLambda _5=&-\omega _2\mu _1+\beta _4\omega _2\mathrm{cos}\left( \omega _2\tau _2\right) +\beta _3\mathrm{sin}\left( \omega _2\tau _1\right) \end{aligned}$$
(C.9)
$$\begin{aligned} \varXi _5=&\beta _4\omega _2\mathrm{sin}\left( \omega _2\tau _2\right) -\beta _3\mathrm{cos}\left( \omega _2\tau _1\right) +\beta _3 \end{aligned}$$
(C.10)
$$\begin{aligned} \varLambda _6=&\frac{5\gamma _5\beta _1}{3\omega _2^2}\mathrm{sin}\left( \omega _2\tau _1\right) -\frac{5\gamma _5\beta _2}{3\omega _2}\mathrm{cos}\left( \omega _2\tau _2\right) -\frac{\beta _1\gamma _5}{3\omega _2^2}\mathrm{sin}\left( 2\omega _2\tau _1\right) \nonumber \\&-\frac{\beta _1\beta _2}{3\omega _2}\mathrm{cos}\left( 2\omega _2\tau _1+\omega _2\tau _2\right) +\frac{2\beta _1\beta _2}{\omega _2}\mathrm{cos}\left( \omega _2\tau _1+\omega _2\tau _2\right) \nonumber \\&+\frac{\beta _1^2}{3\omega _2^2}\mathrm{sin}\left( 3\omega _2\tau _1\right) -\frac{\beta _1^2}{\omega _2^2}\mathrm{sin}\left( 2\omega _2\tau _1\right) -\frac{2\beta _2^2}{3}\mathrm{sin}\left( 3\omega _2\tau _2\right) \nonumber \\&+\frac{2\beta _2\gamma _5}{3\omega _2}\mathrm{cos}\left( 2\omega _2\tau _2\right) +\beta _2^2\mathrm{sin}\left( 2\omega _2\tau _2\right) -\beta _9\mathrm{sin}\left( \omega _2\tau _1\right) \nonumber \\&-\frac{2\beta _1\beta _2}{3\omega _2}\mathrm{cos}\left( \omega _2\tau _1+2\omega _2\tau _2\right) +\omega _2\beta _{15}\mathrm{cos}\left( \omega _2\tau _1+\omega _2\tau _2\right) \nonumber \\&+\omega _2\beta _{10}\mathrm{cos}\left( \omega _2\tau _2\right) +\omega _2^2\beta _{13}\mathrm{sin}\left( 2\omega _2\tau _2\right) -\beta _{14}\mathrm{sin}\left( 2\omega _2\tau _1\right) \nonumber \\ \end{aligned}$$
(C.11)
$$\begin{aligned} \varXi _6=&\frac{10\gamma _5^2}{3\omega _2^2}-\frac{5\gamma _5\beta _1}{\omega _2^2}\mathrm{cos}\left( \omega _2\tau _1\right) -\frac{5\gamma _5\beta _2}{\omega _2}\mathrm{sin}\left( \omega _2\tau _2\right) -3\gamma _7\nonumber \\&-\frac{2\beta _1\gamma _5}{\omega _2^2}+\frac{2\beta _1^2}{\omega _2^2}\mathrm{cos}\left( \omega _2\tau _1\right) +\frac{2\beta _1\beta _2}{\omega _2}\mathrm{sin}\left( \omega _2\tau _2\right) +\frac{2\beta _1^2}{3\omega _2^2}\nonumber \\&+\frac{\beta _1\gamma _5}{3\omega _2^2}\mathrm{cos}\left( 2\omega _2\tau _1\right) -\frac{\beta _1^2}{3\omega _2^2}\mathrm{cos}\left( 3\omega _2\tau _1\right) +\frac{\beta _1^2}{\omega _2^2}\mathrm{cos}\left( 2\omega _2\tau _1\right) \nonumber \\&-\frac{\beta _1\beta _2}{3\omega _2}\mathrm{sin}\left( 2\omega _2\tau _1+\omega _2\tau _2\right) +\frac{2\beta _1\beta _2}{\omega _2}\mathrm{sin}\left( \omega _2\tau _1+\omega _2\tau _2\right) \nonumber \\&+\frac{4\beta _1\beta _2}{3\omega _2}\mathrm{sin}\left( \omega _2\tau _2-\omega _2\tau _1\right) -\frac{2\beta _1\beta _2}{3\omega _2}\mathrm{sin}\left( \omega _2\tau _1+2\omega _2\tau _2\right) \nonumber \\&+\frac{2\beta _2\gamma _5}{3\omega _2}\mathrm{sin}\left( 2\omega _2\tau _2\right) +\frac{2\beta _2^2}{3}\mathrm{cos}\left( 3\omega _2\tau _2\right) -\beta _2^2\mathrm{cos}\left( 2\omega _2\tau _2\right) \nonumber \\&+\frac{2\beta _2^2}{3}+3\beta _9\mathrm{cos}\left( \omega _2\tau _1\right) +3\omega _2\beta _{10}\mathrm{sin}\left( \omega _2\tau _2\right) +2\omega _2^2\beta _{13}\nonumber \\&-\omega _2^2\beta {13}\mathrm{cos}\left( 2\omega _2\tau _2\right) +2\beta _{14}+2\omega _2\beta _{15}\mathrm{sin}\left( \omega _2\tau _2-\omega _2\tau _1\right) \nonumber \\&+\beta _{14}\mathrm{cos}\left( 2\omega _2\tau _1\right) +\omega _2\beta _{15}\mathrm{sin}\left( \omega _2\tau _1+\omega _2\tau _2\right) \end{aligned}$$
(C.12)
$$\begin{aligned} \varLambda _7=&\frac{2\gamma _4\alpha _1}{4\omega _1^2-\omega _2^2}\mathrm{sin}\left( \omega _2\tau _1\right) -\beta _5\mathrm{sin}\left( \omega _2\tau _1\right) +\frac{\beta _1\gamma _4}{\omega _2^2}\mathrm{sin}\left( \omega _2\tau _1\right) \nonumber \\&-\frac{2\omega _2\gamma _4\alpha _2}{4\omega _1^2-\omega _2^2}\mathrm{cos}\left( \omega _2\tau _2\right) -\frac{\beta _2\gamma _4}{\omega _2}\mathrm{cos}\left( \omega _2\tau _2\right) \nonumber \\&+\omega _2\beta _6\mathrm{cos}\left( \omega _2\tau _2\right) \end{aligned}$$
(C.13)
$$\begin{aligned} \varXi _7=&\frac{2\gamma _1\gamma _4}{4\omega _1^2-\omega _2^2}-\frac{2\gamma _4\alpha _1}{4\omega _1^2-\omega _2^2}\mathrm{cos}\left( \omega _2\tau _1\right) -\frac{4\gamma _4\alpha _2\omega _2}{2\omega _1^2-\omega _2^2}\mathrm{sin}\left( \omega _2\tau _2\right) \nonumber \\&+\frac{2\gamma _4\gamma _5}{\omega _2^2}-\frac{\beta _1\gamma _4}{\omega _2^2}-\frac{\beta _1\gamma _4}{\omega _2^2}\mathrm{cos}\left( \omega _2\tau _1\right) -\frac{\beta _2\gamma _4}{\omega _2}\mathrm{sin}\left( \omega _2\tau _2\right) \nonumber \\&+\beta _{15}\mathrm{cos}\left( \omega _2\tau _1\right) +\omega _2\beta _6\mathrm{sin}\left( \omega _2\tau _2\right) +\omega _1\beta _7\mathrm{sin}\left( \omega _1\tau _2\right) \nonumber \\&+\beta _8\mathrm{cos}\left( \omega _1\tau _1\right) +\beta _{11}\omega _1^2+\omega _1\beta _{12}\mathrm{sin}\left( \omega _1\tau _2-\omega _1\tau _1\right) \nonumber \\&-\gamma _6+2\beta _{16} \end{aligned}$$
(C.14)
$$\begin{aligned} \varLambda _8=&\frac{2\gamma _4\alpha _1}{\omega _2\left( \omega _2-2\omega _1\right) }\mathrm{sin}\left( \omega _2\tau _1\right) -\frac{2\omega _2\gamma _4\alpha _2}{\omega _2\left( \omega _2-2\omega _1\right) }\mathrm{cos}\left( \omega _2\tau _2\right) \nonumber \\&-\frac{\beta _1\gamma _4}{4\omega _1^2-\omega _2^2}\mathrm{sin}\left( 2\omega _1\tau _1\right) +\frac{\beta _1\gamma _4}{4\omega _1^2-\omega _2^2}\mathrm{sin}\left( \omega _2\tau _1\right) \nonumber \\&+\frac{2\omega _1\beta _2\gamma _4}{4\omega _1^2-\omega _2^2}\mathrm{cos}\left( 2\omega _1\tau _2\right) -\frac{\omega _2\beta _2\gamma _4}{4\omega _1^2-\omega _2^2}\mathrm{cos}\left( \omega _2\tau _2\right) \nonumber \\&+\beta _5\mathrm{sin}\left( \omega _2\tau _1\right) -\beta _6\omega _2\mathrm{cos}\left( \omega _2\tau _2\right) +\beta _7\omega _1\mathrm{cos}\left( \omega _1\tau _2\right) \nonumber \\&-\beta _8\mathrm{sin}\left( \omega _1\tau _1\right) +\beta _{11}\omega _1^2\mathrm{sin}\left( 2\omega _1\tau _2\right) -\beta _{16}\mathrm{sin}\left( 2\omega _1\tau _1\right) \nonumber \\&+\beta _{12}\omega _1\mathrm{cos}\left( \omega _1\tau _1+\omega _1\tau _2\right) \end{aligned}$$
(C.15)
$$\begin{aligned} \varXi _8=&\frac{2\gamma _4\alpha _1}{\omega _2\left( \omega _2-2\omega _1\right) }\mathrm{cos}\left( \omega _2\tau _1\right) +\frac{2\omega _2\gamma _4\alpha _2}{\omega _2\left( \omega _2-2\omega _1\right) }\mathrm{sin}\left( \omega _2\tau _2\right) \nonumber \\&+\frac{\beta _1\gamma _4}{4\omega _1^2-\omega _2^2}\mathrm{cos}\left( 2\omega _1\tau _1\right) +\frac{\beta _1\gamma _4}{4\omega _1^2-\omega _2^2}\mathrm{cos}\left( \omega _2\tau _1\right) \nonumber \\&+\frac{2\omega _1\beta _2\gamma _4}{4\omega _1^2-\omega _2^2}\mathrm{sin}\left( 2\omega _1\tau _2\right) +\frac{\omega _2\beta _2\gamma _4}{4\omega _1^2-\omega _2^2}\mathrm{sin}\left( \omega _2\tau _2\right) \nonumber \\&+\frac{2\gamma _1\gamma _4}{\omega _2\left( 2\omega _1-\omega _2\right) }+\frac{2\gamma _4\gamma _5}{\omega _2^2-4\omega _1^2}-\gamma _6+\beta _5\mathrm{cos}\left( \omega _2\tau _1\right) \nonumber \\&+\beta _6\omega _2\mathrm{sin}\left( \omega _2\tau _2\right) +\beta _7\omega _1\mathrm{sin}\left( \omega _1\tau _2\right) +\beta _8\mathrm{sin}\left( \omega _1\tau _1\right) \nonumber \\&-\beta _{11}\omega _1^2\mathrm{cos}\left( 2\omega _1\tau _2\right) +\beta _{12}\omega _1\mathrm{sin}\left( \omega _1\tau _1+\omega _1\tau _2\right) \nonumber \\&+\beta _{16}\mathrm{cos}\left( 2\omega _1\tau _1\right) \end{aligned}$$
(C.16)

Appendix

$$\begin{aligned} R_{11}=&\varLambda _1\frac{1}{2\omega _1}+\varLambda _2\frac{3a_1^2}{8\omega _1}+\varLambda _3\frac{a_2^2}{4\omega _1}+\varLambda _4\frac{a_2^2}{8\omega _1}\nonumber \\&\times \mathrm{cos}\left( 2\psi _1-2\psi _2\right) +\varXi _4\frac{a_2^2}{8\omega _1}\mathrm{sin}\left( 2\psi _1-2\psi _2\right) \end{aligned}$$
(D.1)
$$\begin{aligned} R_{12}=&-\varLambda _4\frac{a_1a_2^2}{4\omega _1}\mathrm{sin}\left( 2\psi _1-2\psi _2\right) +\varXi _4\frac{a_1a_2^2}{4\omega _1}\nonumber \\&\times \mathrm{cos}\left( 2\psi _1-2\psi _2\right) +\frac{f\varOmega ^2}{\omega _1}\mathrm{cos}\psi _1 \end{aligned}$$
(D.2)
$$\begin{aligned} R_{13}=&\varLambda _4\frac{a_1a_2}{2\omega _1}\mathrm{cos}\left( 2\psi _1-2\psi _2\right) +\varXi _4\frac{a_1a_2}{4\omega _1}\nonumber \\&\times \mathrm{sin}\left( 2\psi _1-2\psi _2\right) +\varLambda _3\frac{a_1a_2}{2\omega _1} \end{aligned}$$
(D.3)
$$\begin{aligned} R_{14}=&\varLambda _4\frac{a_1a_2^2}{4\omega _1}\mathrm{sin}\left( 2\psi _1-2\psi _2\right) \nonumber \\&-\varXi _4\frac{a_1a_2^2}{4\omega _1}\mathrm{cos}\left( 2\psi _1-2\psi _2\right) \end{aligned}$$
(D.4)
$$\begin{aligned} R_{21}=&\varXi _2\frac{a_1}{4\omega _1}-\frac{f\varOmega ^2}{a_1^2\omega _1}\mathrm{cos}\psi _1 \end{aligned}$$
(D.5)
$$\begin{aligned} R_{22}=&-\varLambda _4\frac{a_2^2}{4\omega _1}\mathrm{cos}\left( 2\psi _1-2\psi _2\right) -\varXi _4\frac{a_2^2}{4\omega _1}\nonumber \\&\times \mathrm{sin}\left( 2\psi _1-2\psi _2\right) -\frac{f\varOmega ^2}{a_1\omega _1}\mathrm{sin}\psi _1 \end{aligned}$$
(D.6)
$$\begin{aligned} R_{23}=&-\varLambda _4\frac{a_2}{4\omega _1}\mathrm{sin}\left( 2\psi _1-2\psi _2\right) +\varXi _4\frac{a_2}{4\omega _1}\nonumber \\&\times \mathrm{cos}\left( 2\psi _1-2\psi _2\right) +\varXi _3\frac{a_2}{2\omega _1} \end{aligned}$$
(D.7)
$$\begin{aligned} R_{24}=&\varLambda _4\frac{a_2^2}{4\omega _1}\mathrm{cos}\left( 2\psi _1-2\psi _2\right) \nonumber \\&+\varXi _4\frac{a_2^2}{4\omega _1}\mathrm{sin}\left( 2\psi _1-2\psi _2\right) \end{aligned}$$
(D.8)
$$\begin{aligned} R_{31}=&\varLambda _8\frac{a_1a_2}{4\omega _2}\mathrm{cos}\left( 2\psi _2-2\psi _1\right) +\varXi _8\frac{a_1a_2}{4\omega _2}\nonumber \\&\times \mathrm{sin}\left( 2\psi _2-2\psi _1\right) +\varLambda _7\frac{a_1a_2}{2\omega _2} \end{aligned}$$
(D.9)
$$\begin{aligned} R_{32}=&\varLambda _8\frac{a_1^2a_2}{4\omega _2}\mathrm{sin}\left( 2\psi _2-2\psi _1\right) \nonumber \\&-\varXi _8\frac{a_1^2a_2}{4\omega _2}\left( 2\psi _2-2\psi _1\right) \end{aligned}$$
(D.10)
$$\begin{aligned} R_{33}=&\varLambda _5\frac{1}{2\omega _2}+\varLambda _6\frac{3a_2^2}{8\omega _2}+\varLambda _7\frac{a_1^2}{4\omega _2}+\varLambda _8\frac{a_1^2}{8\omega _2}\nonumber \\&\times \mathrm{cos}\left( 2\psi _2-2\psi _1\right) +\varXi _8\frac{a_1^2}{8\omega _2}\mathrm{sin}\left( 2\psi _2-2\psi _1\right) \end{aligned}$$
(D.11)
$$\begin{aligned} R_{34}=&-\varLambda _8\frac{a_1^2a_2}{4\omega _2}\mathrm{sin}\left( 2\psi _2-2\psi _1\right) +\varXi _8\frac{a_1^2a_2}{4\omega _2}\nonumber \\&\times \mathrm{cos}\left( 2\psi _2-2\psi _1\right) +\frac{f\varOmega ^2}{\omega _2}\mathrm{sin}\psi _2 \end{aligned}$$
(D.12)
$$\begin{aligned} R_{41}=&-\varLambda _8\frac{a_1}{4\omega _2}\mathrm{sin}\left( 2\psi _2-2\psi _1\right) +\varXi _8\frac{a_1}{4\omega _2}\nonumber \\&\times \mathrm{cos}\left( 2\psi _2-2\psi _1\right) +\varXi _7\frac{a_1}{2\omega _2} \end{aligned}$$
(D.13)
$$\begin{aligned} R_{42}=&\varLambda _8\frac{a_1^2}{4\omega _2}\mathrm{cos}\left( 2\psi _2-2\psi _1\right) +\varXi _8\frac{a_1^2}{4\omega _2}\mathrm{sin}\left( 2\psi _2-2\psi _1\right) \end{aligned}$$
(D.14)
$$\begin{aligned} R_{43}=&\varXi _6\frac{a_2}{4\omega _2}-\frac{f\varOmega ^2}{a_2^2\omega _2}\mathrm{sin}\psi _2 \end{aligned}$$
(D.15)
$$\begin{aligned} R_{44}=&-\varLambda _8\frac{a_1^2}{4\omega _2}\mathrm{cos}\left( 2\psi _2-2\psi _1\right) -\varXi _8\frac{a_1^2}{4\omega _2}\nonumber \\&\times \mathrm{sin}\left( 2\psi _2-2\psi _1\right) +\frac{f\varOmega ^2}{a_2\omega _2}\mathrm{cos}\psi _2 \end{aligned}$$
(D.16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, T., Geng, H., Wang, B. et al. Nonlinear oscillation of active magnetic bearing–rotor systems with a time-delayed proportional–derivative controller. Nonlinear Dyn 109, 2499–2523 (2022). https://doi.org/10.1007/s11071-022-07557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07557-6

Keywords

Navigation