Skip to main content
Log in

Vibration suppression of a time-varying stiffness AMB bearing to multi-parametric excitations via time delay controller

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The applications of active magnetic bearings are growing in industry due to its amazing advantages in reducing friction losses. In this research, the vibration of a two-degree-of-freedom rotor, active magnetic bearings system is suppressed via a nonlinear time delay controller at the confirmed worst resonance case. The selected resonance case is the simultaneous primary and sub-harmonic resonance case. The main aim of this paper was to study the effects of the nonlinear, time delay controller on the behavior of the vibrating system. The multiple time scale perturbation technique is applied to obtain an approximate solution to the second-order approximation. The steady-state solution is obtained around the worst resonance case. The stability of the system is studied applying both frequency response equations and phase-plane method. The worst resonance case is confirmed applying numerical technique. The effects of the different parameters on the steady-state response of the vibrating system are investigated. The obtained approximate solution is validated numerically. Some recommendations are given regarding the design of such system. At the end of the work, a comparison is made with the available published work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kamel, M., Bauomy, H.S.: Nonlinear oscillation of a rotor-AMB system with time varying stiffness and multi-external excitations. J. Vib. Acoust. 131(3) (Apr 22 2009).

  2. Kovačič, G., Wiggins, S.: Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation. Phys. D 57(1), 185–225 (1992)

    MATH  MathSciNet  Google Scholar 

  3. Zhang, W., Tang, Y.: Global dynamics of the cable under combined parametrical and external excitations. Int. J. Non-Linear Mech. 37(3), 505–526 (2002)

    Article  MATH  Google Scholar 

  4. Ji, J.C., Hansen, C.H.: Non-linear oscillations of a rotor in active magnetic bearing. J. Sound Vib. 240(4), 599–612 (2001)

    Article  Google Scholar 

  5. Ji, J.C., Yu, L., Leung, A.Y.T.: Bifurcation behavior of a rotor supported by activemagnetic bearings. J. Sound Vib. 235, 133–151 (2000)

    Article  Google Scholar 

  6. Ji, J.C., Leung, A.Y.T.: Non-linear oscillations of a rotor-magnetic bearing system under super harmonic resonance conditions. Int. J. Non-Linear Mech. 38, 829–835 (2003)

    Article  MATH  Google Scholar 

  7. Amer, Y.A., Hegazy, U.H.: Resonance behavior of a rotor-active magnetic bearing with time-varying stiffness. Chaos Solitons Fractals 34, 1328–1345 (2007)

    Article  Google Scholar 

  8. Amer, Y.A., Eissa, M., Hegazy, U.H.: Dynamic behavior of an AMB/supported rotor subject to parametric excitation. ASME J. Vib. Acoust. 128(5), 646–652 (2006)

    Article  Google Scholar 

  9. Amer, Y.A., Eissa, M., Hegazy, U.H.: A time-varying stiffness rotor active magnetic bearings under combined resonance. J. Appl. Mech. 75, 1–12 (2008)

    Google Scholar 

  10. Eissa, M., Hegazy, U.H., Amer, Y.A.: Dynamic behavior of an AMB supported rotor subject to harmonic excitation. J. Appl. Math. Model. 32(7), 1370–1380 (2008)

    Article  MATH  Google Scholar 

  11. Zhang, W., Zhan, X.P.: Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness. Nonlinear Dyn. 41(4), 331–359 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang, W., Yao, M.H., Zhan, X.P.: Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness. Chaos Solitons Fractals 27(1), 175–186 (2006)

    Article  Google Scholar 

  13. Zhang, W., Zu, J.W., Wang, F.X.: Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying stiffness. Chaos Solitons Fractals 35(3), 586–608 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang, H., Liu, J.: Stability and bifurcation analysis in a magnetic bearing system with time delays. Chaos Solitons Fractals 26, 813–825 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiang, W., Wang, H., Wei, J.: A study of the singularities for magnetic bearing systems with time delays. Chaos Solitons Fractals 36(3), 715–719 (2008)

    Article  MATH  Google Scholar 

  16. Wang, H., Jiang, W.: Multiple stabilities analysis in a magnetic bearing system with time delays. Chaos Solitons Fractals 27(3), 789–799 (2006)

  17. Balachandranand, B., Nayfeh, A.H.: Observation of modal interactions inresonantly forced beam-mass. Nonlinear Dyn. 2, 77–117 (1991)

    Article  Google Scholar 

  18. Saeed, N.A., Eissa, M., El-Ganini, W.A.: Nonlinear oscillations of rotor active magnetic bearings system. Nonlinear Dyn. 74, 1–20 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sayed, M., Kamel, M.: Stability study and control of helicopter blade flapping vibrations. Appl. Math. Model. 35, 2820–2837 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  21. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  22. Kevorkian, J.K., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Spinger, New York (1996)

    Book  MATH  Google Scholar 

  23. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  24. Yakowitz, S., Szidarovszky, F.: An Introduction to Numerical Computations, 2nd edn. Macmillan, New York (1990)

    Google Scholar 

  25. Isaacson, E., Keller, H.: Analysis of Numerical Method. Dover Edition, New York (1994)

    Google Scholar 

  26. Kamel, M., Bauomy, H.S.: Nonlinear study of a rotor-AMB system under simultaneous primary-internal resonance. Appl. Math. Model. 34(10), 2763–2777 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Al-Mandouh.

Appendix

Appendix

$$\begin{aligned} \xi _1&= \frac{3}{4\omega _1 }(\alpha _2 +\omega _1^2 \alpha _6 )a^{2}+\frac{1}{2\omega _1 }(\alpha _3 +\omega _2^2 \alpha _6 )b^{2}\\&-g_1 \cos (\omega _1 t_{\dot{q}}) \\ \eta _1&= -\frac{1}{\omega _1^2 }f_{11}^2 \!+\! \left( \frac{\mu }{2}-\frac{3}{8}\alpha _5 a^{2}\!-\!\frac{1}{4}\alpha _5 b^{2}\!+\!\frac{g_1 }{2}\cos (\omega _1 t_{\dot{q}} )\!\right) ^{2}\\&+\left( \frac{3}{8\omega _1 }(\alpha _2 +\omega _1^2 \alpha _6 )a^{2} +\frac{1}{4\omega _1 }(\alpha _3 +\omega _2^2 \alpha _6 )b^{2}\right. \\&\quad \quad \left. -\frac{g_1 }{2}\sin (\omega _1 t_{\dot{q}})\right) ^{2} \\ \xi _2&= \frac{3}{4\omega _2 }(\beta _2 +\omega _2^2 \alpha _6 )b^{2}+\frac{1}{2\omega _2 }(\beta _3 +\omega _1^2 \alpha _6 )a^{2}\\&\quad -g_2 \sin (\omega _2 t_{\dot{q}} )\\ \eta _2&= -\frac{1}{16\omega _2^2 }F_2^2 +\left( \frac{\mu }{2}-\frac{3}{8}\alpha _5 b^{2}-\frac{1}{4}\alpha _5 a^{2}+\frac{g_2 }{2}\cos (\omega _2 t_{\dot{q}} )\right) ^{2} \\&+\left( \frac{3}{8\omega _2 }(\beta _2 +\omega _2^2 \alpha _6 )b^{2}+\frac{1}{4\omega _2 }(\beta _3 +\omega _1^2 \alpha _6 )a^{2}-\frac{g_2 }{2}\sin (\omega _2 t_{\dot{q}} )\right) ^{2}\\ \xi _3&= \frac{3}{4\omega _1 }(\alpha _2 +\omega _1^2 \alpha _6 )a^{2}-g_1 \cos (\omega _1 t_{\dot{q}} )\\ \eta _3&= -\frac{1}{\omega _1^2 }f_{11}^2 +\left( \frac{\mu }{2}-\frac{3}{8}\alpha _5 a^{2}+\frac{g_1 }{2}\cos (\omega _1 t_{\dot{q}} )\right) ^{2} \\&+\left( \frac{3}{8\omega _1 }(\alpha _2 +\alpha _6 \omega _1^2 )a^{2}-\frac{g_1 }{2}\sin (\omega _1 t_{\dot{q}} )\right) ^{2} \\ \xi _4&= \frac{3}{4\omega _2 }(\beta _2 +\omega _2^2 \alpha _6 )b^{2}-g_2 \sin (\omega _2 t_{\dot{q}} )\\ \eta _4&= -\frac{1}{16\omega _2^2 }F_2^2 +\left( \frac{\mu }{2}-\frac{3}{8}\alpha _5 b^{2}+\frac{g_2 }{2}\cos (\omega _2 t_{\dot{q}})\right) ^{2} \\&+\left( \frac{3}{8\omega _2 }(\beta _2 +\alpha _6 \omega _2^2 )b^{2}-\frac{g_2 }{2}\sin (\omega _2 t_{\dot{q}})\right) ^{2} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eissa, M., Kamel, M. & Al-Mandouh, A. Vibration suppression of a time-varying stiffness AMB bearing to multi-parametric excitations via time delay controller. Nonlinear Dyn 78, 2439–2457 (2014). https://doi.org/10.1007/s11071-014-1601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1601-0

Keywords

Navigation