Skip to main content

Advertisement

Log in

Vibration suppression of a geometrically nonlinear beam with boundary inertial nonlinear energy sinks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

As a simplified model of structures of many kinds, the Euler Bernoulli beam has proved useful for studying vibration suppression. In order to meet engineering design requirements, inertial nonlinear energy sinks (I-NESs) can be installed on the boundaries of an elastic beam to suppress its vibration. The geometric nonlinearity of the elastic beam is here considered. Based on Hamilton's principle, the dynamic governing equations of an elastic beam are established. The steady-state response of nonlinear vibration is obtained by the harmonic balance method and verified by numerical calculation. It is found that the geometric nonlinearity of the beam principally affects the first-order main resonance and reduces the response amplitude. An uncoupled system and the coupled I-NES system both show strong nonlinear hardening characteristics. I-NES achieves good vibration suppression. Finally, the optimal range of parameters for different damping is discussed. The results show that the vibration reduction effect of an optimized inertial nonlinear energy sink can reach 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kerschen, G., Lee, Y.S., Vakakis, A.F., Mcfarland, D.M., Bergman, L.A.: Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. SIAM J. Appl. Math. 66, 648–679 (2006). https://doi.org/10.1137/040613706

    Article  MathSciNet  MATH  Google Scholar 

  2. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying hamiltonian systems. J. Appl. Mech. 68, 34–41 (2001). https://doi.org/10.1115/1.1345524

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 99, 593–609 (2020). https://doi.org/10.1007/s11071-019-04775-3

    Article  MATH  Google Scholar 

  4. Viguié, R., Peeters, M., Kerschen, G., Golinval, J.C.: Energy transfer and dissipation in a duffing oscillator coupled to a nonlinear attachment. J. Comput. Nonlinear Dyn. 4, 1–13 (2009). https://doi.org/10.1115/1.3192130

    Article  Google Scholar 

  5. Viguié, R., Kerschen, G.: Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology. J. Sound Vib. 326, 780–793 (2009). https://doi.org/10.1016/j.jsv.2009.05.023

    Article  Google Scholar 

  6. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J. Vib. Acoust. Trans. ASME. 136, 1–8 (2014). https://doi.org/10.1115/1.4026432

    Article  Google Scholar 

  7. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks, (2020)

  8. Bergeot, B., Bellizzi, S., Cochelin, B.: Passive suppression of helicopter ground resonance instability by means of a strongly nonlinear absorber. Adv. Aircr. Spacecr. Sci. 3, 271–298 (2016). https://doi.org/10.12989/aas.2016.3.3.271

    Article  Google Scholar 

  9. Yang, K., Zhang, Y.W., Ding, H., Yang, T.Z., Li, Y., Chen, L.Q.: Nonlinear energy sink for whole-spacecraft vibration reduction. J. Vib. Acoust. Trans. ASME. (2017). https://doi.org/10.1115/1.4035377

    Article  Google Scholar 

  10. Wang, J., Li, H., Wang, B., Liu, Z., Zhang, C.: Development of a two-phased nonlinear mass damper for displacement mitigation in base-isolated structures. Soil Dyn. Earthq. Eng. 123, 435–448 (2019). https://doi.org/10.1016/j.soildyn.2019.05.007

    Article  Google Scholar 

  11. Lu, X., Liu, Z., Lu, Z.: Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation. Struct. Control Heal. Monit. 24, e2033 (2017). https://doi.org/10.1002/stc.2033

    Article  Google Scholar 

  12. Chen, L.Q., Li, X., Lu, Z.Q., Zhang, Y.W., Ding, H.: Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. J. Sound Vib. 451, 99–119 (2019). https://doi.org/10.1016/j.jsv.2019.03.005

    Article  Google Scholar 

  13. Xue, J.-R., Zhang, Y.-W., Ding, H., Chen, L.-Q.: Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation. Appl. Math. Mech. 41, 1–14 (2020). https://doi.org/10.1007/s10483-020-2560-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, Y., Xu, K., Zang, J., Ni, Z., Zhu, Y., Chen, L.: Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions. Appl. Math. Mech. 40, 1791–1804 (2019). https://doi.org/10.1007/s10483-019-2548-9

    Article  MathSciNet  Google Scholar 

  15. Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018). https://doi.org/10.1016/j.jsv.2018.02.052

    Article  Google Scholar 

  16. Bitar, D., Ture Savadkoohi, A., Lamarque, C.H., Gourdon, E., Collet, M.: Extended complexification method to study nonlinear passive control. Nonlinear Dyn. 99, 1433–1450 (2020). https://doi.org/10.1007/s11071-019-05365-z

    Article  MATH  Google Scholar 

  17. AL-Shudeifat, M.A.: Nonlinear energy sinks with nontraditional kinds of nonlinear restoring forces. J. Vib. Acoust. 139, 1–5 (2017). https://doi.org/10.1115/1.4035479

    Article  Google Scholar 

  18. AL-Shudeifat, M.A., Wierschem, N.E., Bergman, L.A., Vakakis, A.F.: Numerical and experimental investigations of a rotating nonlinear energy sink. Meccanica 52, 763–779 (2017). https://doi.org/10.1007/s11012-016-0422-2

    Article  Google Scholar 

  19. Farid, M., Gendelman, O.V.: Tuned pendulum as nonlinear energy sink for broad energy range. J. Vib. Control. 23, 373–388 (2017). https://doi.org/10.1177/1077546315578561

    Article  MathSciNet  Google Scholar 

  20. Tsiatas, G.C., Charalampakis, A.E.: A new hysteretic nonlinear energy sink (HNES). Commun. Nonlinear Sci. Numer. Simul. 60, 1–11 (2018). https://doi.org/10.1016/j.cnsns.2017.12.014

    Article  MATH  Google Scholar 

  21. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89, 179–196 (2017). https://doi.org/10.1007/s11071-017-3444-y

    Article  Google Scholar 

  22. Farid, M., Gendelman, O.V., Babitsky, V.I.: Dynamics of a hybrid vibro-impact nonlinear energy sink. ZAMM J. Appl. Math. Mech./Zeitschrift für Angew. Math. Und. Mech. (2019). https://doi.org/10.1002/zamm.201800341

    Article  Google Scholar 

  23. Zang, J., Cao, R.-Q., Zhang, Y.-W., Fang, B., Chen, L.-Q.: A lever-enhanced nonlinear energy sink absorber harvesting vibratory energy via giant magnetostrictive-piezoelectricity. Commun. Nonlinear Sci. Numer. Simul. 95, 105620 (2021). https://doi.org/10.1016/J.CNSNS.2020.105620

    Article  MathSciNet  MATH  Google Scholar 

  24. Smith, M.C.: Synthesis of mechanical networks: the inerter’. (2002)

  25. Papageorgiou, C., Houghton, N.E., Smith, M.C.: Experimental testing and analysis of inerter devices. J. Dyn. Syst. Meas. Control. 131, 1–11 (2009). https://doi.org/10.1115/1.3023120

    Article  Google Scholar 

  26. Shi, X., Zhu, S.: Dynamic characteristics of stay cables with inerter dampers. J. Sound Vib. 423, 287–305 (2018). https://doi.org/10.1016/j.jsv.2018.02.042

    Article  Google Scholar 

  27. Zhang, Y.W., Lu, Y.N., Zhang, W., Teng, Y.Y., Yang, H.X., Yang, T.Z., Chen, L.Q.: Nonlinear energy sink with inerter. Mech. Syst. Signal Process. 125, 52–64 (2019). https://doi.org/10.1016/j.ymssp.2018.08.026

    Article  Google Scholar 

  28. Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019). https://doi.org/10.1016/j.jsv.2019.03.014

    Article  Google Scholar 

  29. Yang, T.Z., Yang, X.D., Li, Y., Fang, B.: Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. JVC/J. Vib. Control. 20, 1293–1300 (2014). https://doi.org/10.1177/1077546313480547

    Article  MathSciNet  Google Scholar 

  30. Mamaghani, A.E., Khadem, S.E., Bab, S.: Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn. 86, 1761–1795 (2016). https://doi.org/10.1007/s11071-016-2992-x

    Article  MATH  Google Scholar 

  31. Geng, X., Ding, H., Wei, K., Chen, L.: Suppression of multiple modal resonances of a cantilever beam by an impact damper. Appl. Math. Mech. 41, 383–400 (2020). https://doi.org/10.1007/s10483-020-2588-9

    Article  MathSciNet  Google Scholar 

  32. Ding, H., Yang, Y., Chen, L.Q., Yang, S.P.: Vibration of vehicle-pavement coupled system based on a Timoshenko beam on a nonlinear foundation. J. Sound Vib. 333, 6623–6636 (2014). https://doi.org/10.1016/j.jsv.2014.07.016

    Article  Google Scholar 

  33. Ding, H., Huang, L., Mao, X., Chen, L.: Primary resonance of traveling viscoelastic beam under internal resonance. Appl. Math. Mech. (2017). https://doi.org/10.1007/s10483-016-2152-6

    Article  MATH  Google Scholar 

  34. Ding, H., Lu, Z.Q., Chen, L.Q.: Nonlinear isolation of transverse vibration of pre-pressure beams. J. Sound Vib. 442, 738–751 (2019). https://doi.org/10.1016/j.jsv.2018.11.028

    Article  Google Scholar 

  35. Chouvion, B.: A wave approach to show the existence of detached resonant curves in the frequency response of a beam with an attached nonlinear energy sink. Mech. Res. Commun. 95, 16–22 (2019). https://doi.org/10.1016/j.mechrescom.2018.11.006

    Article  Google Scholar 

  36. Zang, J., Zhang, Y.W., Ding, H., Yang, T.Z., Chen, L.Q.: The evaluation of a nonlinear energy sink absorber based on the transmissibility. Mech. Syst. Signal Process. 125, 99–122 (2019). https://doi.org/10.1016/j.ymssp.2018.05.061

    Article  Google Scholar 

  37. Lu, Z., Li, K., Ding, H., Chen, L.: Nonlinear energy harvesting based on a modified snap-through mechanism. Appl. Math. Mech. 40, 167–180 (2019). https://doi.org/10.1007/s10483-019-2408-9

    Article  MathSciNet  MATH  Google Scholar 

  38. Vakakis, A.F.: Passive nonlinear targeted energy transfer. Phil. Trans. R. Soc. A. (2018). https://doi.org/10.1098/rsta.2017.0132

    Article  MATH  Google Scholar 

  39. Li, X., Zhang, Y., Ding, H., Chen, L.: Integration of a nonlinear energy sink and a piezoelectric energy harvester. Appl. Math. Mech. 38, 1019–1030 (2017). https://doi.org/10.1007/s10483-017-2220-6

    Article  MathSciNet  Google Scholar 

  40. Parseh, M., Dardel, M., Ghasemi, M.H.: Investigating the robustness of nonlinear energy sink in steady state dynamics of linear beams with different boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 29, 50–71 (2015). https://doi.org/10.1016/j.cnsns.2015.04.020

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, Y., Wang, X.: Investigation into the linear velocity response of cantilever beam embedded with impact damper. JVC/J. Vib. Control. 25, 1365–1378 (2019). https://doi.org/10.1177/1077546318821711

    Article  MathSciNet  Google Scholar 

  42. Zhang, Y.W., Hou, S., Zhang, Z., Zang, J., Ni, Z.Y., Teng, Y.Y., Chen, L.Q.: Nonlinear vibration absorption of laminated composite beams in complex environment. Nonlinear Dyn. 99, 2605–2622 (2020). https://doi.org/10.1007/s11071-019-05442-3

    Article  Google Scholar 

  43. Zhang, T., Ouyang, H., Zhang, Y.O., Lv, B.L.: Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses. Appl. Math. Model. 40, 7880–7900 (2016). https://doi.org/10.1016/j.apm.2016.03.050

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, Y.X., Sun, L.Z.: Transverse vibration of an undamped elastically connected double-beam system with arbitrary boundary conditions. J. Eng. Mech. (2015). https://doi.org/10.1061/(ASCE)EM.1943-7889

    Article  Google Scholar 

  45. Ding, H., Zhu, M., Chen, L.: Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions. Appl. Math. Mech. 40, 911–924 (2019). https://doi.org/10.1007/s10483-019-2493-8

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, Y.R., Fang, Z.W.: Vibrations in an elastic beam with nonlinear supports at both ends. J. Appl. Mech. Tech. Phys. 56, 337–346 (2015). https://doi.org/10.1134/S0021894415020200

    Article  MathSciNet  MATH  Google Scholar 

  47. Zang, J., Cao, R.-Q., Zhang, Y.-W.: Steady-state response of a viscoelastic beam with asymmetric elastic supports coupled to a lever-type nonlinear energy sink. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06625-7

    Article  Google Scholar 

  48. Zhang, Z., Ding, H., Zhang, Y.W., Chen, L.Q.: Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta Mech. Sin. (2021). https://doi.org/10.1007/s10409-021-01062-6

    Article  MathSciNet  Google Scholar 

  49. Ding, H., Zhu, M.H., Chen, L.Q.: Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dyn. 92, 325–349 (2018). https://doi.org/10.1007/s11071-018-4058-8

    Article  Google Scholar 

  50. Ding, H., Li, Y., Chen, L.Q.: Nonlinear vibration of a beam with asymmetric elastic supports. Nonlinear Dyn. 95, 2543–2554 (2019). https://doi.org/10.1007/s11071-018-4705-0

    Article  MATH  Google Scholar 

  51. Ding, H., Dowell, E.H., Chen, L.Q.: Transmissibility of bending vibration of an elastic beam. J. Vib. Acoust. Trans. ASME. (2018). https://doi.org/10.1115/1.4038733

    Article  Google Scholar 

  52. Mao, X.Y., Ding, H., Chen, L.Q.: Vibration of flexible structures under nonlinear boundary conditions. J. Appl. Mech. Trans. ASME. (2017). https://doi.org/10.1115/1.4037883

    Article  Google Scholar 

  53. Mao, X.Y., Ding, H., Chen, L.Q.: Passive isolation by nonlinear boundaries for flexible structures. J. Vib. Acoust. Trans. ASME. (2019). https://doi.org/10.1115/1.4042932

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was supported by the National Natural Science Foundation of China (12002217, 11902203, 12022213) and Liaoning Revitalization Talents Program (XLYC1807172).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Gao, ZT., Fang, B. et al. Vibration suppression of a geometrically nonlinear beam with boundary inertial nonlinear energy sinks. Nonlinear Dyn 109, 1259–1275 (2022). https://doi.org/10.1007/s11071-022-07490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07490-8

Keywords

Navigation