Skip to main content
Log in

Robust nonlinear control synthesis by using centre manifold-based reduced models for the mitigating of friction-induced vibration

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the synthesis of reduced-order robust nonlinear controllers for more efficient robust mitigating of friction-induced vibration (FIV) issued from the mode-coupling mechanism. A novel scheme is proposed and developed. It consists of the centre manifold approach which is first proposed for reducing the dimension of the system model to control. Then, the obtained reduced model is exploited to synthesize a sliding-mode-based reduced-order controller which is then applied on the full-order original model for suppressing or at least mitigating the mode-coupling-based FIV. The main objective of the proposed study is to analyse performances of the proposed reduced-order controller in terms of its capacities to efficiently mitigate mode-coupling-based vibrations while ensuring suitable robustness levels with respect to the centre manifold-based reduced model inaccuracy and the friction coefficient uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Antoulas, A., Sorensen, D., Gugercin, S.: A survey of model reduction methods for large-scale systems. Contemp. Math. 280, 193–220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baur, U., Benner, P., Greiner, A., Korvink, J.G., Lienemann, J., Moos-mann, C.: Parameter preserving model order reduction for mems applications. Math. Comput. Model. Dyn. Syst. 17(4), 297–317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105, 1141–1190 (2021)

    Article  Google Scholar 

  4. Opreni, A., Vizzaccaro, A., Frangi, A., Touzé, C.: Model order reduction based on direct normal form: application to large finite element mems structures featuring internal resonance. Nonlinear Dyn. 105, 1237–1272 (2021)

    Article  Google Scholar 

  5. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference and optimization. SIAM Rev. 60, 550–591 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Scherpen, J.M.A.: Balancing for nonlinear systems. Syst. Control Lett. 21, 143–153 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  9. Djennoune, S., Bettayeb, M.: Balancing for nonlinear singularly perturbed systems. Int. J. Control 57, 129–138 (2003)

    Article  MATH  Google Scholar 

  10. Nechak, L., Raynaud, H.-H., Kulcsar, C.: Stochastic linear quadratic control via random parameter-dependent truncated balanced realization. Int. J. Robust Nonlinear Control 31, 1208–1226 (2021)

    Article  MathSciNet  Google Scholar 

  11. Nechak, L., Raynaud, H.-H., Kulcsar, C.: Model order reduction of random parameter-dependent linear systems. Automatica 55, 95–107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Z., Wang, X., Zhang, Q., Guan, Z., Mo, J., Ouyang, H.: Model reduction for friction-induced vibration of multi-degree-of-freedom systems and experimental validation. Int. J. Mech. Sci. 145, 3917–3933 (2018)

    Article  Google Scholar 

  13. Loyer, A., Sinou, J.-J., Chiello, O., Lorang, X.: Study of nonlinear behaviors and modal reductions for friction destabilized systems. J. Sound Vib. 331, 1011–1041 (2012)

    Article  Google Scholar 

  14. Monteil, M., Besset, S., Sinou, J.-J.: A double modal synthesis approach for brake squeal prediction. Mech. Syst. Sig. Process. 70, 1073–1084 (2015)

    Google Scholar 

  15. Do, H.Q., Massa, F., Tison, T., Lallemand, B.: A global strategy for the stability analysis of friction induced vibration problem with parameter variations. Mech. Syst. Sig. Process. 84(Part A), 346–364 (2017)

    Article  Google Scholar 

  16. Nechak, L., Besset, S., Sinou, J.-J.: Robustness of stochastic expansions for the stability of uncertain nonlinear dynamical systems–application to brake squeal. Mech. Syst. Sig. Process. 111, 194–209 (2018)

    Article  Google Scholar 

  17. Nobari, A., Ouyang, H., Bannister, P.: Uncertainty quantification of squeal instability via surrogate modelling. Mech. Syst. Signal Process. 60–61, 887–908 (2015)

    Article  Google Scholar 

  18. Nechak, L., Sinou, J.-J.: Hybrid surrogate model for the prediction of uncertain friction-induced instabilities. J. Sound Vib. 126, 122–143 (2017)

    Article  Google Scholar 

  19. Ouyang, H.: Prediction and assignment of latent roots of damped asymmetric systems by structural modifications. Mech. Syst. Signal Process. 23(6), 1920–1930 (2009)

    Article  MathSciNet  Google Scholar 

  20. Popp, K., Rudolph, M.: Vibration control to avoid stick-slip motion. J. Vib. Control 10, 1585–1600 (2004)

    Article  MATH  Google Scholar 

  21. Bergeot, B., Berger, S., Bellizzi, S.: Mode coupling instability mitigation in friction systems by means of nonlinear energy sinks: numerical highlighting and local stability analysis. J. Vib. Control 24(15), 3487–3511 (2017)

    Article  MathSciNet  Google Scholar 

  22. Nakano, K., Maegawa, S.: Safety-design criteria of sliding systems for preventing friction-induced vibration. J. Sound Vib. 324, 539–555 (2009)

    Article  Google Scholar 

  23. Chatterjee, S.: Non-linear control of friction-induced self-excited vibration. Int. J. Nonlinear Mech. 42, 459–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thomsen, J.J.: Using fast vibrations to quench friction-induced oscillations. J. Sound Vib. 228, 1079–1102 (1999)

    Article  Google Scholar 

  25. Sahoo, P.K., Chatterjee, S.: Effect of high-frequency excitation on friction induced vibration caused by the combined action of velocity-weakening and mode-coupling. J. Vib. Control 26(9–10), 735–746 (2020)

    Article  MathSciNet  Google Scholar 

  26. Armstrong-Helouvry, B., Amin, B.: Pid control in the presence of static friction: a comparison of algebraic and describing function analysis. Automatica 32, 679–692 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hensen, R. H. A., Van De Molengraft, M. J. G., Steinbuch, M.: Friction-induced hunting limit cycles: an event mapping approach. In: Proceeding of the 2002 American control conference, Anchorage, AK, pp. 2267–2272, (2002)

  28. Gupta, S.K., Wang, J., Barry, O.R.: Nonlinear vibration analysis in precision motion stage with pid and time-delayed feedback controls. Nonlinear Dyn. 101, 439–464 (2020)

    Article  Google Scholar 

  29. Hashemi-Dehkordi, S.M., Mailah, M., Abu-Bakar, A.R.: Suppressing friction-induced vibration due to negative damping and mode coupling effects using active force control. Aust. J. Basic Appl. Sci. 4, 3917–3933 (2010)

    Google Scholar 

  30. Singh, K.V., Ouyang, H.: Pole assignment using state feedback with time delay in friction-induced vibration problems. Acta Mech. 224(3), 645–656 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saha, A., Bhattacharya, B., Wahi, P.: A comparative study on the control of friction-driven oscillations by time-delayed feedback. Nonlinear Dyn. 60, 15–37 (2010)

    Article  MATH  Google Scholar 

  32. Das, J., Mallik, A.K.: Control of friction driven oscillation by time-delayed state feedback. J. Sound Vib. 297(3–5), 578–594 (2006)

    Article  Google Scholar 

  33. Chatterjee, S.: Time-delayed feedback control of friction-induced instability. Int. J. Nonlinear Mech. 42, 1127–1143 (2007)

    Article  MATH  Google Scholar 

  34. Tehrani, M.G., Ouyang, H.: Receptance-based partial pole assignment for asymmetric systems using state-feedback. Shock. Vib. 19(5), 1135–1142 (2012)

    Article  Google Scholar 

  35. Zhen, C., Jiffri, S., Li, D., Xiang, J., Mottershead, J.E.: Feedback linearisation of nonlinear vibration problems: a new formulation by the method of receptances. Mech. Syst. Signal Process. 98, 1056–1068 (2018)

    Article  Google Scholar 

  36. Nechak, L.: Nonlinear control of friction-induced limit cycle oscillations via feedback linearization. Mech. Syst. Signal Process. 126, 264–280 (2019)

    Article  Google Scholar 

  37. Nechak, L.: Nonlinear state observer for estimating and controlling of friction-induced vibrations. Mech. Syst. Signal Process. 4, 3917–3933 (2020)

    Google Scholar 

  38. Chomette, B., Sinou, J.-J.: On the use of linear and nonlinear controls for mechanical systems subjected to friction-induced vibration. Appl. Sci. 10(6), 2085 (2020)

    Article  Google Scholar 

  39. Liang, Y., Yamaura, H., Ouyang, H.: Active assignment of eigenvalues and eigen-sensitivities for robust stabilization of friction-induced vibration. Mech. Syst. Signal Process. 90, 254–267 (2017)

    Article  Google Scholar 

  40. Nechak, L.: Robust nonlinear control of mode-coupling based vibrations by using high-gain observer and sliding-mode controller. ASME J. Dyn. Syst. Measur. Control 10(1115/1), 4048356 (2020)

    Google Scholar 

  41. Knoblock, H.W.: Construction of center manifolds. J. Appl. Math. Mech. 70(7), 215–233 (1990)

    MathSciNet  Google Scholar 

  42. Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics: analytical, computational and experimental methods. Wiley, Hoboken (1995)

    Book  MATH  Google Scholar 

  43. Haragus, M., Iooss, G.: Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems. Springer, New York (2011)

    Book  MATH  Google Scholar 

  44. Roberts, A.J.: Backwards theory supports modelling via invariant manifolds for non-autonomous dynamical systems, technical report. arXiv:1804.06998, (2019)

  45. Khalil, H.: Nonlinear Systems. Prentice Hall, Hoboken (2002)

    MATH  Google Scholar 

  46. Slotine, J.-J., Weiping, L.: Applied Nonlinear Control. Prentice Hall, Hoboken (1991)

    MATH  Google Scholar 

  47. Sinou, J.-J., Thouverez, F., Jezequel, L.: Methods to reduce non-linear mechanical systems for instability computation. Archive Comput. Methods Eng. 11(3), 257–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nechak, L., Berger, S., Aubry, E.: Robust analysis of uncertain dynamic systems: combination of the centre manifold and polynomial chaos theories. WSEAS Trans. Syst. 4(9), 386–395 (2010)

    Google Scholar 

  49. Roberts, A.J.: Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems. The J. Austr. Math. Soc. Series B Appl. Math. 31(1), 48–75 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. Roberts, A.J.: Computer algebra derives correct initial conditions for low-dimensional dynamical models. Comput. Phys. Commun. 126(3), 187–206 (2000)

    Article  MATH  Google Scholar 

  51. Farshid, A., Javad, M.: Reduced order model-based sliding mode control of dynamic systems governed by burgers’ equation. In: 2015 54th IEEE conference on decision and control (CDC), pp. 1917–1922, (2015)

  52. Coullet, P.H., Spiegel, E.A.: Amplitude equations for systems with competing instabilities. SIAM J. Appl. Math. 43(4), 776–821 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  53. Roberts, A.J.: Low-dimensional modelling of dynamics via computer algebra. Comput. Phys. Comm. 100, 215–230 (1997)

    Article  MATH  Google Scholar 

  54. Cabre, X., Fontich, E., De Llavel, R.: The parameterization method for invariant manifolds i: manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Cabre, X., Fontich, E., De Llavel, R.: The parameterization method for invariant manifolds iii: overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Van Der Berg, J.B., Heterbrij, W., Rink, B.: The parameterization method for center manifolds. J. Differ. Equ. 269(3), 2132–2184 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  57. Knobloch, H.W., Aulbach, B.: The role of center manifolds in ordinary differential equations. In: Proceedings of the Fifth Czechoslovak Conference on Differential Equations and Their Applications held in Bratislava 47, 179–189 (1982)

  58. Aulbach, B., Wanner, T.: The hartman-grobman theorem for caratheodory-type differential equations in banach space. Nonlinear Anal. 40, 91–104 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. Potzsche, C., Rasmussen, M.: Taylor approximation of integral manifolds. J. Dyn. Diff. Equat. 18, 427–460 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Barreira, L., Valls, C.: Stability of Nonautonomous Differential Equations. Vol. 1926 of Lecture Notes in Mathematics, Springer, (2007)

  61. Aulbach, B.: A reduction principle for nonautonomous differential equations. Arch. Math. 39, 217–232 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  62. Chen, H., De La Llave, R.: Time dependent center manifolds in pdes. Discr. Contin. Dynam. Syst. 40(12), 6709–6745 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  63. Boxler, P.: A stochastic version of the centre manifold theorem. Probab. Theory Relat. Fields 83, 509–545 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  64. Boxler, P.: How to construct stochastic center manifolds on the level of vector fields. In n: Arnold L., Crauel H., Eckmann JP. (eds) Lyapunov Exponents. Lecture Notes in Mathematics, volume 1486, (1991)

  65. Arnold, L.: Random Dynamical Systems, Springer Monographs in Mathematics. Springer, (2002)

  66. Roberts, A.J.: Normal form transforms separate slow and fast modes in stochastic dynamical systems. Phys. A 387, 12–38 (2008)

    Article  MathSciNet  Google Scholar 

  67. Nechak, L., Berger, S., Aubry, E.: Wiener haar expansion for the modeling and prediction of the dynamic behavior of self-excited nonlinear uncertain systems. ASME J. Dyn. Syst. Measur. Control 134(5), 051011 (2012)

    Article  Google Scholar 

  68. Nechak, L., Berger, S., Aubry, E.: Wiener askey and wiener haar expansions for the analysis and prediction of limit cycle oscillations in uncertain nonlinear dynamic friction systems. ASME J. Comput. Nonlinear Dyn. 9(2), 021007 (2014)

    Article  Google Scholar 

  69. Hoffmann, N., Gaul, L.: Effects of damping on mode-coupling instability in friction induced oscillations. ZAMM J. Appl. Math. Mech. 83(8), 524–534 (2003)

    Article  MATH  Google Scholar 

  70. Sinou, J.-J., Jézéquel, L.: Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Eur. J. Mech. A/Solid 26, 107–122 (2007)

    Article  MATH  Google Scholar 

  71. Kieu, D.T., Bergeot, B., Gobert, M.L., Berger, S.: Stability analysis of a clutch system with uncertain parameters using sparse polynomial chaos expansions. Mech. Ind. 20, 17 (2019)

    Google Scholar 

  72. Snoun, C., Bergeot, B., Berger, S.: Prediction of the dynamic behaviour of uncertain friction system coupled to nonlinear energy sinks using a multi-element generalized polynomial chaos approach. Eur. J. Mech. 80, 17 (2019)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyes Nechak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

As presented previously in Sect. 2, the centre manifold \(\varvec{\phi }\) which is the solution of the algebraic Eq. (8) is in practice approximated by a polynomial with a predefined order. The dynamical systems considered are with only cubic nonlinearities. They can be expressed in a compact general (6)-like equation with a zero input by using the Kronecker product operator.

$$\begin{aligned} \left\{ \begin{array}{llll} \dot{{\varvec{z}}}_{c}(t)={\varvec{A}}_{c}({\tilde{\mu }}){\varvec{z}}_{c}(t)+[G_{(3)}^{ij}]. {\varvec{z}}_{a}(t)\otimes {\varvec{z}}_{a}(t)\otimes {\varvec{z}}_{a}(t)\\ \dot{{\varvec{z}}}_{s}(t)={\varvec{A}}_{s}({\tilde{\mu }}){\varvec{z}}_{s}(t)+[H_{(3)}^{ij}]. {\varvec{z}}_{a}(t)\otimes {\varvec{z}}_{a}(t)\otimes {\varvec{z}}_{a}(t)\\ \dot{{\tilde{\mu }}}=0 \end{array} \right. \end{aligned}$$
(33)

where \({\varvec{z}}_{a}=[{\varvec{z}}_{c};{\varvec{z}}_{s};{\tilde{\mu }}]\), \(G_{3}^{ij}\) and \(H_{3}^{ij}\) (with \(1\le i \ge 2, 1 \le k \ge (n+3)^{3}\)) are the coefficients of the cubic monomials in the state variables with \(\otimes \) being the Kronecker operator.

Then, the coefficients of the second-order centre manifolds for both systems (Hultèn and Hoffman-like systems) are null. Then, third centre manifolds are searched for. The associated polynomials contain only the third-order monomials in the centre variables, which lets the stable variable to be approximated by the following third-order polynomial in the centre variables \({\varvec{z}}_{c}\) and \({\tilde{\mu }}\)

$$\begin{aligned} {\varvec{z}}_{s}= \varvec{\phi }({\varvec{z}}_{c},{\tilde{\mu }})=\sum _{p=i+j+l=2}^{3}\sum _{j=0}^{p}\sum _{l=0}^{p}{\varvec{c}}_{ijl}z_{c_{1}}^{i}z_{c_{i}}^{j}{\tilde{\mu }}^{l} \end{aligned}$$
(34)

and equivalently:

$$\begin{aligned} {\varvec{z}}_{s}= & {} {\varvec{c}}_{300}z_{c_{1}}^{3}+{\varvec{c}}_{210}z_{c_{1}}^{2}z_{c_{2}}\nonumber \\&+{\varvec{c}}_{120}z_{c_{1}}z_{c_{2}}^{2}+{\varvec{c}}_{030}z_{c_{2}}^{3}+{\varvec{c}}_{201}z_{c_{1}}{\tilde{\mu }}\nonumber \\&+{\varvec{c}}_{111}z_{c_{1}}z_{c_{2}}{\tilde{\mu }}+....+{\varvec{c}}_{003}{\tilde{\mu }}^{3} \end{aligned}$$
(35)

Then, by replacing the previous polynomial in the algebraic equation (8), the centre manifold coefficients for the \(k^{\text {th}}\)-stable variable can be identified. For the sake of brevity, only the first coefficients are given, while the expressions of the remaining coefficients and also the higher-order centre manifold coefficients can be found in [47].

$$\begin{aligned} c_{k,300}= & {} \frac{H_{(3)}^{k,1}}{3A_{c_{1}}-A_{s_{k}}} \end{aligned}$$
(36)
$$\begin{aligned} c_{k,210}= & {} \frac{H_{(3)}^{k,2}+H_{(3)}^{k,n+2}+H_{(3)}^{k,(n+1)^{2}}}{2A_{c_{1}}+A_{c_{2}}-A_{s_{k}}} \end{aligned}$$
(37)
$$\begin{aligned} c_{k,210}= & {} \frac{H_{(3)}^{k,2}+H_{(3)}^{k,n+2}+H_{(3)}^{k,(n+1)^{2}}}{2A_{c_{1}}+A_{c_{2}}-A_{s_{k}}} \end{aligned}$$
(38)
$$\begin{aligned} c_{k,120}= & {} \frac{H_{(3)}^{k,n+3}+H_{(3)}^{k,(n+1)^{2}+2}+H_{(3)}^{k,(n+1)^{2}+n+2}}{2A_{c_{1}}+A_{c_{2}}-A_{s_{k}}}\nonumber \\ \end{aligned}$$
(39)
$$\begin{aligned} c_{k,030}= & {} \frac{H_{(3)}^{k,(n+1)^{2}+n+3}}{3A_{c_{2}}-A_{s_{k}}} \end{aligned}$$
(40)

where \(A_{c_{1}}\) and \(A_{c_{2}}\) are the first and second terms of the matrix \({\varvec{A}}_{c}\), respectively, while \(A_{s_{k}}\) is the \(k^{\text {th}}\)-diagonal term of the matrix \({\varvec{A}}_{s}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechak, L. Robust nonlinear control synthesis by using centre manifold-based reduced models for the mitigating of friction-induced vibration. Nonlinear Dyn 108, 1885–1901 (2022). https://doi.org/10.1007/s11071-022-07313-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07313-w

Keywords

Navigation