Skip to main content
Log in

A comparative study on the control of friction-driven oscillations by time-delayed feedback

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We perform a detailed study of two linear time-delayed feedback laws for control of friction-driven oscillations. Our comparative study also includes two different mathematical models for the nonlinear dependence of frictional forces on sliding speed. Linear analysis gives stability boundaries in the plane of control parameters. The equilibrium loses stability via a Hopf bifurcation. Dynamics near the bifurcation is studied using the method of multiple scales (MMS). The bifurcation is supercritical for one frictional force model and subcritical for the other, pointing to complications in the true nature of the bifurcation for friction-driven oscillations. The MMS results match very well with numerical solutions. Our analysis suggests that one form of the control force outperforms the other by many reasonable measures of control effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tondl, A.: Quenching of Self-excited Vibrations. Elsevier, Amsterdam (1991)

    Google Scholar 

  2. Sheng, G.: Friction-induced Vibrations and Sound: Principles and Applications. CRC Press, Boca Raton (2008)

    MATH  Google Scholar 

  3. Hinrichs, N., Oestreich, M., Popp, K.: On the modeling of friction oscillators. J. Sound Vib. 216(3), 435–459 (1998)

    Article  Google Scholar 

  4. Thomsen, J.J.: Using fast vibrations to quench friction-induced oscillations. J. Sound Vib. 228(5), 1079–1102 (1999)

    Article  MathSciNet  Google Scholar 

  5. Panovko, Y.G., Gubanova, I.I.: Stability and Oscillations of Elastic Systems, Paradoxes, Fallacies and New Concepts. Consultants Bureau, New York (1965)

    Google Scholar 

  6. Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. 88(B12), 10359–10370 (1983)

    Article  Google Scholar 

  7. McMillan, A.J.: A non-linear friction model for self-excited vibrations. J. Sound Vib. 205(3), 323–335 (1997)

    Article  MathSciNet  Google Scholar 

  8. Canudas de Wit, C.C., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dupont, P., Hayward, V., Armstrong, B., Alpeter, F.: Single state elasto-plastic friction models. IEEE Trans. Autom. Control 47(5), 787–792 (2002)

    Article  Google Scholar 

  10. Swevers, J., Al-Bender, F., Ganseman, C., Prajogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. Autom. Control 45(4), 675–686 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the Leuven integrated friction model structure. IEEE Trans. Autom. Control 47(4), 683–687 (2002)

    Article  MathSciNet  Google Scholar 

  12. Lampaert, V., Al-Bender, F., Swevers, J.: A generalized Maxwell-Slip friction model appropriate for control purpose. In: Proceedings, IEEE International Conference, Physics and Control, vol. 4, pp. 1170–1177. St. Petersburg, Russia (2003)

  13. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. 58, 389–411 (2005)

    Article  Google Scholar 

  14. Awrejcewicz, J., Olejnik, P.: Numerical and experimental investigations of simple non-linear system modeling a Girling duo-servo brake mechanism. In: ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois (2–6 September 2003)

  15. Andreaus, U., Casini, P.: Dynamics of friction oscillators excited by a moving base and/or driving force. J. Sound Vib. 245(4), 685–699 (2001)

    Article  Google Scholar 

  16. Hetzler, H., Schwarzer, D., Seemann, W.: Analytical investigation of steady-state stability and Hopf-bifurcations occurring in sliding friction oscillators with application to low-frequency disc brake noise. Commun. Nonlinear Sci. Numer. Simul. 12(1), 83–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, Y., Feng, Z.C.: Bifurcation and chaos in friction-induced vibration. Commun. Nonlinear Sci. Numer. Simul. 9, 633–647 (2004)

    Article  MATH  Google Scholar 

  18. Feeny, B.F., Moon, F.C.: Quenching stick–slip chaos with dither. J. Sound Vib. 237(1), 173–180 (2000)

    Article  Google Scholar 

  19. Popp, K., Rudolph, M.: Vibration control to avoid stick-slip motion. J. Vib. Control 10(11), 1585–1600 (2004)

    Article  MATH  Google Scholar 

  20. Chatterjee, S.: Non-linear control of friction-induced self-excited vibration. Int. J. Non-Linear Mech. 42, 459–469 (2007)

    Article  Google Scholar 

  21. Heckl, M.A., Abrahams, I.D.: Active control of friction driven oscillations. J. Sound Vib. 193(1), 417–426 (1996)

    Article  Google Scholar 

  22. Wagner, U., von, Hochlenert, D., Jearsiripongkul, T., Hagedorn, P.: Active control of brake squeal via ‘smart pads’. SAE Technical Papers 2004-01-2773

  23. Atay, F.M.: Van der Pol oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998)

    Article  MathSciNet  Google Scholar 

  24. Maccari, A.: Vibration control for the primary resonance of the van der Pol oscillator by a time delay state feedback. Int. J. Non-Linear Mech. 38, 123–131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Maccari, A.: The response of a parametrically excited van der Pol oscillator to a time delay state feedback. Nonlinear Dyn. 26, 105–119 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hu, H., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced Duffing oscillator with time delay state feedback. Nonlinear Dyn. 15, 311–327 (1998)

    Article  MATH  Google Scholar 

  27. Masoud, Z.N., Nayfeh, A.H., Al-Mousa, A.: Delayed position-feedback for the reduction of payload pendulations of rotary cranes. J. Vib. Control 9(1–2), 257–277 (2003)

    MATH  Google Scholar 

  28. Jnifene, A.: Active vibration control of flexible structures using delayed position feedback. Syst. Control Lett. 56, 215–222 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Qian, C.Z., Tang, J.S.: A time delay control for a nonlinear dynamic beam under moving load. J. Sound Vib. 309, 1–8 (2008)

    Article  Google Scholar 

  30. Das, J., Mallik, A.K.: Control of friction driven oscillation by time-delayed state feedback. J. Sound Vib. 297(3–5), 578–594 (2006)

    Article  Google Scholar 

  31. Chatterjee, S.: Time-delayed feedback control of friction-induced instability. Int. J. Non-Linear Mech. 42, 1127–1143 (2007)

    Google Scholar 

  32. Neubauer, M., Neuber, C., Popp, K.: Control of stick-slip vibrations. In: Proceedings of the IUTAM Symposium, Munich, Germany (18–22 July 2005)

  33. Wahi, P., Chatterjee, A.: Averaging oscillations with small fractional damping and delayed terms. Nonlinear Dyn. 38, 3–22 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Das, S.L., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323–335 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wahi, P., Chatterjee, A.: Regenerative tool chatter near a codimension 2 Hopf point using multiple scales. Nonlinear Dyn. 40, 323–338 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Wahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, A., Bhattacharya, B. & Wahi, P. A comparative study on the control of friction-driven oscillations by time-delayed feedback. Nonlinear Dyn 60, 15–37 (2010). https://doi.org/10.1007/s11071-009-9577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9577-x

Keywords

Navigation