Skip to main content
Log in

New mixed solutions generated by velocity resonance in the \((2+1)\)-dimensional Sawada–Kotera equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the N-soliton solutions of the \((2+1)\)-dimensional Sawada–Kotera equation, the collisions among lump waves, line waves, and breather waves are studied in this paper. By introducing new constraints, the lump wave does not collide with other waves forever, or stays in collision forever. Under the condition of velocity resonance, the soliton molecules consisting of a lump wave, a line wave, and any number of breather waves are derived for the first time. In particular, the interaction of a line wave and a breather wave will generate two breathers under certain conditions, which is worth exploring, and the method can also be extended to other \((2+1)\)-dimensional integrable equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Kazimierz, L., Rejish, N., Luis, S.: Soliton molecules in dipolar Bose–Einstein condensates. Phys. Rev. A 86, 013610 (2012)

    Article  Google Scholar 

  2. Liu, X.M., Yao, X.K., Cui, Y.D.: Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018)

    Article  Google Scholar 

  3. Ma, H.C., Cheng, Q.X., Deng, A.P.: Soliton molecules, asymmetric soliton and some novel hybrid solutions for the isospectral BKP equation. Mod. Phys. Lett. B. 35, 2150174 (2021)

    Article  MathSciNet  Google Scholar 

  4. Li, Y., Yao, R.X., Xia, Y.R., Lou, S.Y.: Plenty of novel interaction structures of soliton molecules and asymmetric solitons to (2+1)-dimensional Sawada–Kotera equation. Commun. Nonlinear. Sci. Numer. Simul. 100, 105843 (2021)

    Article  MathSciNet  Google Scholar 

  5. Wang, B., Zhang, Z., Li, B.: Soliton molecules and some hybrid solutions for the nonlinear Schrodinger equation. Chin. Phys. Lett. 37, 030501 (2020)

    Article  Google Scholar 

  6. Zhang, Z., Yang, S.X., Li, B.: Soliton molecules, asymmetric solitons and hybrid solutions for (2+1)-dimensional fifth-order KdV equation. Chin. Phys. Lett. 36, 120501 (2019)

    Article  Google Scholar 

  7. Lou, S.Y.: Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance. J. Phys. Commun. 4, 041002 (2020)

    Article  Google Scholar 

  8. Yang, X.Y., Zhang, Z., Li, B.: Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation. Chin. Phys. B 29, 100501 (2020)

    Article  Google Scholar 

  9. Yan, Z.W., Lou, S.Y.: Special types of solitons and breather molecules for a (2+1)-dimensional fifth-order KdV equation. Commun. Nonlinear. Sci. Numer. Simul. 91, 105425 (2020)

    Article  MathSciNet  Google Scholar 

  10. Zhang, Z., Guo, Q., Li, B., Chen, J.C.: A new class of nonlinear superposition between lump waves and other waves for Kadomtsev–Petviashvili I equation. Commun. Nonlinear. Sci. Numer. Simul. 101, 105866 (2021)

    Article  MathSciNet  Google Scholar 

  11. Satsuma, J., Ablowitz, J.: Two-dimensional lumps in nonliner dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    Article  MathSciNet  Google Scholar 

  12. Tao, Y.S., He, J.S.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)

    Article  Google Scholar 

  13. Wang, X., Liu, C., Wang, L.: Darboux transformation and rogue wave solutions for the variable-coefficients coupled Hirota equations. J. Math. Anal. Appl. 449, 1534–1552 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ahsan, M., Ahmad, I., Ahmad, M., Hussian, I.: A numerical Haar wavelet-finite difference hybrid method for linear and non-linear Schrodinger equation. Math. Comput. Simul. 165, 13–25 (2019)

    Article  MathSciNet  Google Scholar 

  15. Liu, X., Ahsan, M., Ahmad, M., Hussian, I., Alqarni, M.M., Mahmoud, E.E.: Haar wavelets multi-resolution collocation procedures for two-dimensional nonlinear Schrodinger equation. Alex. Eng. J. 60, 3057–3071 (2021)

    Article  Google Scholar 

  16. Nehad, A.S.: An analytical view of fractional-order Fishers type equations within Caputo operator. Alex. Eng. J. 2021, 5516392 (2021)

    MathSciNet  Google Scholar 

  17. Ahsan, M., Siraj-ul-Islam, Hussain, I.: Haar wavelets multi-resolution collocation analysis of unsteady inverse heat problems. Inverse Probl. Sci. Eng. 27 1498–1520 (2019)

  18. Liu, X., Ahsan, M., Ahmad, M., Nisar, M., Liu, X.L., Ahmad, I., Ahmad, H.: Applications of Haar wavelet-finite difference hybrid method and its convergence for hyperbolic nonlinear Schrodinger equation with energy and mass conversion. Energies 14, 7831 (2021)

    Article  Google Scholar 

  19. Wazwaz, A.M.: Multiple soliton solutions for (2+1)-dimensional Sawada–Kotera and Caudrey–Dodd–Gibbon equations. Math. Method Appl. Sci. 34, 1580–1586 (2011)

    Article  MathSciNet  Google Scholar 

  20. Ahmad, I., Ahsan, M., Din, Z.U., Ahmad, M., Kumam, P.: An efficient local formulation for time–dependent PDEs. Mathematics 7, 216 (2019)

    Article  Google Scholar 

  21. Zaheer-ud-Din, Ahsan, M., Ahmad, M., Khan, W., Mahmoud, E.E., Abdel-Aty, A.H.: Meshless analysis of nonlocal boundary value problems in anisotropic and inhomogeneous media. Mathematics 8, 2045 (2020)

  22. Jia, M., Lin, J., Lou, S.Y.: Soliton and breather molecules in few-cycle-pulse optical model. Nonlinear Dyn. 100 3745C3757 (2020)

  23. Jia, M., Chen, Z.T.: Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation. Phys. Scr. 95, 105210 (2020)

    Article  Google Scholar 

  24. Konopelchenko, B.G., Dubrovsky, V.G.: Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A 102, 15–17 (1984)

    Article  MathSciNet  Google Scholar 

  25. Chen, Q.Q., Qi, Z.Q., Chen, J.C., Li, B.: Resonant line wave soliton solutions and interaction solutions for (2+1)-dimensional nonlinear wave equation. Results Phys. 27, 104480 (2021)

    Article  Google Scholar 

  26. Zhang, Z., Yang, X.Y., Li, W.T., Li, B.: Trajectory equation of a lump before and after collision with line, lump and breather waves for (2+1)-dimensional Kadomtsev-Petviashvili equation. Chin. Phys. B 28, 110201 (2019)

    Article  Google Scholar 

  27. Zhao, Z.L., He, L.C.: Resonance Y-type soliton and hybrid solutions of a (2+1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation. Appl. Math. Lett. 122, 107497 (2021)

    Article  MathSciNet  Google Scholar 

  28. Li, J.H., Chen, Q.Q., Li, B.: Resonance Y-type soliton solutions and some new types of hybrid solutions in the (2+1)-dimensional Sawada–Kotera equation. Commun. Theor. Phys. 73, 045006 (2021)

    Article  MathSciNet  Google Scholar 

  29. Kuo, C.K.: Resonant multi-soliton solutions to the (2+1)-dimensional Sawada–Kotera equations via the simplified form of the linear superposition principle. Phys. Scr. 94, 085218 (2019)

    Article  Google Scholar 

  30. An, H.L., Feng, D.L., Zhu, H.X.: General M-lump, high-order breather and localized interaction solutions to the (2+1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 98, 1275–1286 (2019)

    Article  Google Scholar 

  31. Li, L.Q., Gao, Y.T., Hu, L., Jia, T.T., Ding, C.C., Feng, Y.J.: Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 100, 2729–2738 (2020)

    Article  Google Scholar 

  32. Ghanbari, B., Kuo, C.K.: A variety of solitary wave solutions to the (2+1)-dimensional bidirectional SK and variable-coefficient SK equations. Results Phys. 18, 103266 (2020)

    Article  Google Scholar 

  33. Wang, W., Yao, R.X., Lou, S.Y.: Abundant traveling wave structures of (1+1)-dimensional Sawada–Kotera equation: few cycle solitons and soliton molecules. Chin. Phys. Lett. 37, 100501 (2020)

    Article  Google Scholar 

  34. Chen, A.H., Wang, F.F.: Fissionable wave solutions, lump solutions and interactional solutions for the (2+1)-dimensional Sawada–Kotera equation. Phys. Scr. 94, 055206 (2019)

    Article  Google Scholar 

  35. Liu, J.G.: Interaction behaviors for the (2+1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 93, 741–747 (2018)

    Article  Google Scholar 

  36. Huang, L.L., Chen, Y.: Lump solutions and interaction phenomenon for (2+1)-dimensional Sawada–Kotera equation. Commun. Theor. Phys. 67, 473–478 (2017)

    Article  MathSciNet  Google Scholar 

  37. Zhang, H.Q., Ma, W.X.: Lump solutions to the (2+1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 87, 2305–2310 (2017)

    Article  MathSciNet  Google Scholar 

  38. Yao, R.X., Li, Y., Lou, S.Y.: A new set and new relations of multiple soliton solutions of (2+1)-dimensional Sawada–Kotera equation. Commun. Nonlinear. Sci. Numer. Simul. 99, 105820 (2021)

    Article  MathSciNet  Google Scholar 

  39. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant Nos. 12175111 and 11975131, and K.C.Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Chen, Q., Wang, M. et al. New mixed solutions generated by velocity resonance in the \((2+1)\)-dimensional Sawada–Kotera equation. Nonlinear Dyn 108, 1617–1626 (2022). https://doi.org/10.1007/s11071-022-07248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07248-2

Keywords

Navigation