Skip to main content
Log in

Numerical solutions for distributed-order fractional optimal control problems by using generalized fractional-order Chebyshev wavelets

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies a numerical approach based on generalized fractional-order Chebyshev wavelets for solving distributed-order fractional optimal control problems (DO-FOCPs). The exact value of the Riemann–Liouville fractional integral operator of the given wavelets is computed by applying regularized beta function. The exact formula and collocation method are applied to transform the DO-FOCP to a new optimization problem. This new problem can be solved by the existing methods. Four examples are given to show the advantage of this method in comparison with the existing methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14(9–10), 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  2. Rossikhin, Y. A., Shitikova, M. V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids (1997)

  3. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance III: the diffusion limit, pp. 171–180. Math. Financ. Birkhäuser, Basel (2001)

  4. Ionescu, C., Lopes, A., Copot, D., Machado, J.T., Bates, J.H.T.: The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017)

    Article  MathSciNet  Google Scholar 

  5. Atanackovic, T.M.: A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 159(1), 77–86 (2002)

    Article  Google Scholar 

  6. Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Y.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6(3), 259–280 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Lorenzo, C.F., Hartley, T.T.: Variable-order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  Google Scholar 

  8. Zaky, M.A.: A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn. 91(4), 2667–2681 (2018)

    Article  Google Scholar 

  9. Rahimkhani, P., Ordokhani, Y.: Numerical investigation of distributed-order fractional optimal control problems via Bernstein wavelets. Optim. Contr. Appl. Met. 42(1), 355–373 (2021)

    Article  MathSciNet  Google Scholar 

  10. Saeedi, H., Moghadam, M.M., Mollahasani, N., Chuev, G.N.: A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1154–1163 (2011)

    Article  MathSciNet  Google Scholar 

  11. Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M., Cattani, C.: Wavelets method for solving fractional optimal control problems. Appl. Math. Comput. 286, 139–154 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Rafiei, Z., Kafash, B., Karbassi, S.M.: A new approach based on using Chebyshev wavelets for solving various optimal control problems. Comput. Appl. Math. 37(1), 144–157 (2018)

    Article  MathSciNet  Google Scholar 

  13. Li, Y., Zhao, W.: Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Comput. 216(8), 2276–2285 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Mashayekhi, S., Razzaghi, M.: Numerical solution of the fractional Bagley-Torvik equation by using hybrid functions approximation. Math. Method Appl. Sci. 39(3), 353–365 (2016)

    Article  MathSciNet  Google Scholar 

  15. Toan, P.T., Vo, T.N., Razzaghi, M.: Taylor wavelet method for fractional delay differential equations. Eng. Comput. 1–10,(2019)

  16. Vichitkunakorn, P., Vo, T.N., Razzaghi, M.: A numerical method for fractional pantograph differential equations based on Taylor wavelets. T I Meas. Control 42(7), 1334–1344 (2020)

    Article  Google Scholar 

  17. Kazem, S., Abbasbandy, S., Kumar, S.: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37(7), 5498–5510 (2013)

    Article  MathSciNet  Google Scholar 

  18. Bhrawy, A., Alhamed, Y., Baleanu, D., Al-Zahrani, A.: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17(4), 1137–1157 (2014)

    Article  MathSciNet  Google Scholar 

  19. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. 40(17–18), 8087–8107 (2016)

    Article  MathSciNet  Google Scholar 

  20. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley (1993)

  21. Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M.: A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type. Appl. Math. Model. 38(5–6), 1597–1606 (2014)

    Article  MathSciNet  Google Scholar 

  22. Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions. Washington: Natl. Bureau Stand. 1965. (1973)

  23. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods-fundamentals in single domains. Springer, Berlin (2006)

    Book  Google Scholar 

  24. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numer. Algorithms 77(4), 1283–1305 (2018)

    Article  MathSciNet  Google Scholar 

  25. Bass, R.F.: Real analysis for graduate students. Createspace Ind, Pub (2013)

  26. Sahu, P.K., Saha Ray, S.: Comparison on wavelets techniques for solving fractional optimal control problems. J. Vib. Control 24(6), 1185–1201 (2018)

    Article  MathSciNet  Google Scholar 

  27. Zeid, S.S., Yousefi, M.: Approximated solutions of linear quadratic fractional optimal control problems. J. Appl. Math. Stat. Info. 12(2), 83–94 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Alizadeh, A., Effati, S.: An iterative approach for solving fractional optimal control problems. J. Vib. Control 24(1), 18–36 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to the anonymous referees for valuable suggestions that improved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Razzaghi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, G., Razzaghi, M. Numerical solutions for distributed-order fractional optimal control problems by using generalized fractional-order Chebyshev wavelets. Nonlinear Dyn 108, 265–277 (2022). https://doi.org/10.1007/s11071-021-07195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07195-4

Keywords

Navigation