Skip to main content

Advertisement

Log in

Numerical Solution of Fractional Optimal Control Problems with Inequality Constraint Using the Fractional-Order Bernoulli Wavelet Functions

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper studies the fractional optimal control problems (FOCPs) with inequality constraints. Using the Caputo definition, an optimization method based on a set of basis functions, namely the fractional-order Bernoulli wavelet functions (F-BWFs), is proposed. The solution is expanded in terms of the F-BWFs with unknown coefficients. In the first step, we convert the inequality conditions to equality conditions. In the second step, we use the operational matrix (OM) of fractional integration and the product OM of F-BWFs, with the help of the Lagrange multipliers technique for converting the FOCPs into an easier one, described by a system of nonlinear algebraic equations. Finally, for illustrating the efficiency and accuracy of the proposed technique, several numerical examples are analysed and the results compared with the analytical or the approximate solutions obtained by other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal OP (2004) A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn 38(1–4):323–337

    MathSciNet  MATH  Google Scholar 

  • Alipour M, Rostamy D, Baleanu D (2013) Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. J Vib Control 19:2523–2540

    MathSciNet  MATH  Google Scholar 

  • Bagley RL, Torvik PJ (1985) Fractional calculus in the transient analysis of viscoelastically damped structures. J AIAA 23:918–925

    MATH  Google Scholar 

  • Behroozifar M, Habibi N (2018) A numerical approach for solving a class of fractional optimal control problems via operational matrix Bernoulli polynomials. J Vib Control 24(12):2494–2511

    MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA (2017) Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput Math Appl 73(6):1100–1117

    MathSciNet  MATH  Google Scholar 

  • Dahaghin MS, Hassani H (2017) An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation. Nonlinear Dyn 88(3):1587–1598

    MathSciNet  MATH  Google Scholar 

  • Diethelm K, Walz G (1997) Numerical solution of fractional order differential equations by extrapolation. Numer Algorithms 16:231–253

    MathSciNet  MATH  Google Scholar 

  • Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 16:3–22

    MathSciNet  MATH  Google Scholar 

  • El-Kady M (2003) A Chebyshev finite difference method for solving a class of optimal control problems. Int J Comput Math 80:883–895

    MathSciNet  MATH  Google Scholar 

  • Elsayed A, Gaber M (2006) The adomian decomposition method for solving partial differential equations of fractional order in finite domains. Phys Lett A 359:175–182

    MathSciNet  MATH  Google Scholar 

  • Feichtinger G, Hartl RF, Sethi SP (1994) Dynamic optimal control models in advertising: recent developments. Manag Sci 40(2):195–226

    MATH  Google Scholar 

  • Galeone L, Garrappa R (2006) On multistep methods for differential equations of fractional order. Mediterr J Math 3:565–580

    MathSciNet  MATH  Google Scholar 

  • Garrappa R, Popolizio M (2012) On accurate product integration rules for linear fractional differential equations. J Comput Appl Math 235:1085–1097

    MathSciNet  MATH  Google Scholar 

  • Haber A, Verhaegen M (2018) Sparsity preserving optimal control of discretized PDE systems. Comput Methods Appl Mech Eng 335:610–630

    MathSciNet  MATH  Google Scholar 

  • Hager WW, Lanculescu GD (1984) Dual approximations in optimal control. SIAM J Control Optim 22:423–465

    MathSciNet  Google Scholar 

  • Hassani H, Naraghirad E (2019) A new computational method based on optimization scheme for solving variable-order time fractional Burgers’ equation. Math Comput Simul 162:1–17

    MathSciNet  Google Scholar 

  • Hassani H, Avazzadeh Z, Tenreiro Machado JA (2019a) Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng Comput. https://doi.org/10.1007/s00366-019-00736-x

    Article  MATH  Google Scholar 

  • Hassani H, Tenreiro Machado JA, Naraghirad E (2019b) Generalized shifted Chebyshev polynomials for fractional optimal control problems. Commun Nonlinear Sci Numer Simul 75:50–61

    MathSciNet  Google Scholar 

  • Heydari MH (2018) A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems. J Franklin Inst 355(12):4970–4995

    MathSciNet  MATH  Google Scholar 

  • Heydari MH (2019) A direct method based on the Chebyshev polynomials for a new class of nonlinear variable-order fractional 2D optimal control problems. J Frankl Inst 356(15):8216–8236

    MathSciNet  MATH  Google Scholar 

  • Heydari MH, Hooshmandasl MR, Maalek Ghaini F, Fereidouni F (2013) Two-dimensional legendre wavelets for solving fractional poisson equation with dirichlet boundary conditions. Eng Anal Bound Elem 37(11):1331–1338

    MathSciNet  MATH  Google Scholar 

  • Heydari MH, Avazzadeh Z, Yang Y (2019) A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl Math Comput 352:235–248

    MathSciNet  MATH  Google Scholar 

  • Howlett Ph (2000) The optimal control of a train. Ann Oper Res 98(1–4):65–87

    MathSciNet  MATH  Google Scholar 

  • Karamali G, Dehghan M, Abbaszadeh M (2018) Numerical solution of a time-fractional PDE in the electroanalytical chemistry by a local meshless method. Eng Comput 35:87–100

    Google Scholar 

  • Keshavarz E, Ordokhani Y, Razzaghi M (2015) A numerical solution for fractional optimal control problems via Bernoulli polynomials. J Vib Control 22(18):3889–3903

    MathSciNet  MATH  Google Scholar 

  • Kheiri Sarabi B, Sharma M, Kaur D (2017) An optimal control based technique for generating desired vibrations in a structure. Iran J Sci Technol 41(3):219–228

    Google Scholar 

  • Kirk DE (1970) Optimal control theory. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Kulish VV, Lage JL (2002) Application of fractional calculus to fluid mechanics. J Fluids Eng 124:803–806

    Google Scholar 

  • Lakestani M, Dehghan M, Irandoust-Pakchin S (2012) The construction of operational matrix of fractional derivatives using b-spline functions. Commun Nonlinear Sci Numer Simul 17:1149–1162

    MathSciNet  MATH  Google Scholar 

  • Li W, Wang S, Rehbock V (2019) Numerical solution of fractional optimal control. J Optim Theory Appl 180(2):556–573

    MathSciNet  MATH  Google Scholar 

  • Liu D, Liu L, Lu Y (2019) LQ-optimal control of boundary control systems. Iran J Sci Technol 2019:1–10

    Google Scholar 

  • Lotfi A (2019) Epsilon penalty method combined with an extension of the Ritz method for solving a class of fractional optimal control problems with mixed inequality constraints. Appl Numer Math 135:497–509

    MathSciNet  MATH  Google Scholar 

  • Martin RB (1992) Optimal control drug scheduling of cancer chemotherapy. Automatica 28(6):1113–1123

    MathSciNet  Google Scholar 

  • Mashayekhi S, Razzaghi M (2018) An approximate method for solving fractional optimal control problems by hybrid functions. J Vib Control 24(9):1621–1631

    MathSciNet  MATH  Google Scholar 

  • Mashayekhi S, Ordokhani Y, Razzaghi M (2012) Hybrid functions approach for nonlinear constrained optimal control problems. Commun Nonlinear Sci Numer Simul 17:1831–1843

    MathSciNet  MATH  Google Scholar 

  • Mirinejad H, Inanc T (2017) An RBF collocation method for solving optimal control problems. Robot Auton Syst 87:219–225

    Google Scholar 

  • Nemati A, Yousefi SA (2016) A numerical method for solving fractional optimal control problems using Ritz method. J Comput Nonlinear Dyn 11(5):051015 (7 pages)

    Google Scholar 

  • Nemati A, Yousefi S, Soltanian F, Ardabili JS (2016) An efficient numerical solution of fractional optimal control problems by using the Ritz method and Bernstein operational matrix. Asian J Control 18(6):2272–2282

    MathSciNet  MATH  Google Scholar 

  • Odibat Z, Momani S, Xu H (2010) A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl Math Model 34:593–600

    MathSciNet  MATH  Google Scholar 

  • Oldham KB (2010) Fractional differential equations in electrochemistry. Adv Eng Softw 41:9–12

    MATH  Google Scholar 

  • Olivier A, Pouchol C (2019) Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer. J Optim Theory Appl 181(2):479–503

    MathSciNet  MATH  Google Scholar 

  • Ordokhani Y, Razzaghi M (2005) Linear quadratic optimal control problems with inequality constraints via rationalized Haar functions. DCDIS Ser B 12:761–73

    MATH  Google Scholar 

  • Parsa Moghaddam B, Tenreiro Machado JA (2017) A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput Math Appl 73(6):1262–1269

    MathSciNet  MATH  Google Scholar 

  • Rabiei K, Ordokhani Y (2018) Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems. Appl Math 63:541–567

    MathSciNet  MATH  Google Scholar 

  • Rabiei K, Parand K (2019) Collocation method to solve inequality-constrained optimal control problems of arbitrary order. Eng Comput 2019:1–11

    Google Scholar 

  • Rabiei K, Ordokhani Y, Babolian E (2017) The Boubaker polynomials and their application to solve fractional optimal control problems. Nonlinear Dyn 88(2):1013–1026

    MathSciNet  MATH  Google Scholar 

  • Rahimkhani P, Ordokhani Y (2018) Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz-Legendre wavelets. Optim Control Appl Methods 39(6):1916–1934

    MATH  Google Scholar 

  • Rahimkhani P, Ordokhani Y (2019) Generalized fractional-order Bernoulli–Legendre functions: an effective tool for solving two-dimensional fractional optimal control problems. IMA J Math Control Inf 36(1):185–212

    MathSciNet  MATH  Google Scholar 

  • Rahimkhani P, Ordokhani Y, Babolian E (2016) An efficient approximate method for solving delay fractional optimal control problems. Nonlinear Dyn 86(3):1649–1661

    MathSciNet  MATH  Google Scholar 

  • Rehman MU, Khan RA (2011) The legendre wavelet method for solving fractional differential equations. Commun Nonlinear Sci Numer Simul 16:4163–4173

    MathSciNet  MATH  Google Scholar 

  • Sabouri J, Effati S, Pakdaman M (2017) A neural network approach for solving a class of fractional optimal control problems. Neural Process Lett 45(1):59–74

    Google Scholar 

  • Safaie E, Farahi MH, Farmani Ardehaie M (2015) An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials. Comput Appl Math 34(3):831–846

    MathSciNet  MATH  Google Scholar 

  • Sahu PK, Saha Ray S (2017) A new Bernoulli wavelet method for numerical solutions of nonlinear weakly singular Volterra integro-differential equations. Int J Comput Methods 14:1750022

    MathSciNet  MATH  Google Scholar 

  • Soradi Zeid S, Effati S, Kamyad AV (2016) Approximation methods for solving fractional optimal control problems. Comput Appl Math 37:158–182

    MathSciNet  MATH  Google Scholar 

  • Swan GW (1990) Role of optimal control theory in cancer chemotherapy. Math BioSci 101(2):237–284

    MATH  Google Scholar 

  • Tenreiro Machado JA, Kiryakov V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153

    MathSciNet  MATH  Google Scholar 

  • Treanţă S (2019) On a modified optimal control problem with first-order PDE constraints and the associated saddle-point optimality criterion. Eur J Control 2(180):556–573

    MathSciNet  Google Scholar 

  • Vittek J, Butko P, Ftorek B, Makyš P, Gorel L (2017) Energy near-optimal control strategies for industrial and traction drives with a.c. motors. Math Probl Eng 2017:1–22

    Google Scholar 

  • Yousefi SA, Lotfi A, Dehghan M (2011) The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problem. J Vib Control 17:2059–2065

    MathSciNet  MATH  Google Scholar 

  • Zahra WK, Hikal MM (2017) Non standard finite difference method for solving variable order fractional optimal control problems. J Vib Control 23(6):948–958

    MathSciNet  MATH  Google Scholar 

  • Zaky MA, Tenreiro Machado JA (2017) On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun Nonlinear Sci Numer Simul 52:177–189

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for carefully reading the paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Ordokhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valian, F., Ordokhani, Y. & Vali, M.A. Numerical Solution of Fractional Optimal Control Problems with Inequality Constraint Using the Fractional-Order Bernoulli Wavelet Functions. Iran J Sci Technol Trans Electr Eng 44, 1513–1528 (2020). https://doi.org/10.1007/s40998-020-00327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-020-00327-3

Keywords

Navigation