Skip to main content
Log in

An asymmetric mode-localized mass sensor based on the electrostatic coupling of different structural modes with distributed electrodes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Mode-localized sensor with amplitude ratio as output metric has shown excellent potential in the field of micromass detection. In this paper, an asymmetric mode-localized mass sensor with a pair of electrostatically coupled resonators of different thicknesses is proposed. Partially distributed electrodes are introduced to ensure the asymmetric mode coupling of second- and third-order modes while actuating the thinner resonator by the distributed electrode. The analytical dynamic model is established by Euler–Bernoulli theory and solved by harmonic balance method (HBM) combined with asymptotic numerical method (ANM). Detailed investigations on the linear and nonlinear behavior, critical amplitude as well as the sensitivity of the sensor are performed. The sensitivity of the proposed sensor can be enhanced by about 20 times compared to first-order mode-localized mass sensors. By exploiting the nonlinearities while driving the device beyond the critical amplitude for the in-phase mode, the sensor performs a great improvement in sensitivity up to 1.78 times compared to linear case. The influence of the coupling voltage on the sensor performance is studied, which gives a good reference to avoid mode aliasing. Moreover, the effect of the length of driving electrode on sensitivity is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fritz, J., et al.: Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000)

    Article  Google Scholar 

  2. Burg, T.P., Manalis, S.R.: Suspended microchannel resonators for biomolecular detection. Appl. Phys. Lett. 83(13), 2698–2700 (2003)

    Article  Google Scholar 

  3. Arntz, Y., et al.: Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14(1), 86–90 (2002)

    Article  Google Scholar 

  4. Hansen, K.M., et al.: Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal. Chem. 73(7), 1567–1571 (2001)

    Article  Google Scholar 

  5. Zhang, H., et al.: Sequence specific label-free dna sensing using film-bulk-acoustic-resonators. IEEE Sens. J. 7(12), 1587–1588 (2007)

    Article  Google Scholar 

  6. Chaste, J., et al.: A nanomechanical mass sensor with yoctogram resolution. Nat Nanotechnol 7(5), 301–304 (2012)

    Article  Google Scholar 

  7. Ekinci, K.L., Yang, Y.T., Roukes, M.L.: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95(5), 2682–2689 (2004)

    Article  Google Scholar 

  8. Zhao, J., et al.: A new sensitivity improving approach for mass sensors through integrated optimization of both cantilever surface profile and cross-section. Sens. Actuators, B Chem. 206, 343–350 (2015)

    Article  Google Scholar 

  9. Gao, R., et al.: Method to further improve sensitivity for high-order vibration mode mass sensors with stepped cantilevers. IEEE Sens. J. 17(14), 4405–4411 (2017)

    Article  Google Scholar 

  10. Xie, H., et al.: Enhanced sensitivity of mass detection using the first torsional mode of microcantilevers. Meas. Sci. Technol. 19(5), 39–44 (2008)

    Article  Google Scholar 

  11. Kacem, N., et al.: Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications. J. Micromech. Microeng. 20(4), 045023 (2010)

    Article  Google Scholar 

  12. Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003)

    Article  Google Scholar 

  13. Younis, M.I., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4(2), 21010 (2009)

    Article  Google Scholar 

  14. Chen, Z., et al.: Performances and improvement of coupled dual-microcantilevers in sensitivity. Sens. Actuators, A 288, 117–124 (2019)

    Article  Google Scholar 

  15. Walter, V., et al.: Electrostatic actuation to counterbalance the manufacturing defects in a MEMS mass detection sensor using mode localization. Proced. Eng. 168, 1488–1491 (2016)

    Article  Google Scholar 

  16. Rabenimanana, T., et al.: Mass sensor using mode localization in two weakly coupled MEMS cantilevers with different lengths: design and experimental model validation. Sens. Actuators, A 295, 643–652 (2019)

    Article  Google Scholar 

  17. Thiruvenkatanathan, P., et al.: Common mode rejection in electrically coupled MEMS resonators utilizing mode localization for sensor applications. In 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum. IEEE, pp. 358–363 (2009)

  18. Spletzer, M., et al.: Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Appl. Phys. Lett. 88(25), 254102 (2006)

    Article  Google Scholar 

  19. Spletzer, M., et al.: Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays. Appl. Phys. Lett. 92(11), 114102 (2008)

    Article  Google Scholar 

  20. Thiruvenkatanathan, P., et al.: ultrasensitive mode-localized micromechanical electrometer. In: 2010 IEEE International Frequency Control Symposium, pp. 91–96. IEEE, New York (2010)

    Chapter  Google Scholar 

  21. Ouakad, H.M., Ilyas, S., Younis, M.I.: Investigating mode localization at lower- and higher-order modes in mechanically coupled MEMS resonators. J. Comput. Nonlinear Dynam. 15(3), 031001 (2020)

    Article  Google Scholar 

  22. Thiruvenkatanathan, P., et al.: Ultrasensitive mode-localized mass sensor with electrically tunable parametric sensitivity. Appl. Phys. Lett. 96(8), 081913 (2010)

    Article  Google Scholar 

  23. Ilyas, S., Younis, M.I.: Theoretical and experimental investigation of mode localization in electrostatically and mechanically coupled microbeam resonators. Int. J. Non-Linear Mech. 125, 103516 (2020)

    Article  Google Scholar 

  24. Pandit, M., et al.: Utilizing energy localization in weakly coupled nonlinear resonators for sensing applications. J. Microelectromech. Syst. 28(2), 182–188 (2019)

    Article  Google Scholar 

  25. Lyu, M., et al.: Exploiting nonlinearity to enhance the sensitivity of mode-localized mass sensor based on electrostatically coupled MEMS resonators. Int. J. Non-Linear Mech. 121, 103455 (2020)

    Article  Google Scholar 

  26. Zhao, C., et al.: A mode-localized MEMS electrical potential sensor based on three electrically coupled resonators. J. Sens. Sens. Syst. 6(1), 1–8 (2017)

    Article  Google Scholar 

  27. Kasai, Y., et al.: Ultra-sensitive minute mass sensing using a microcantilever virtually coupled with a virtual cantilever. Sensors (Basel, Switzerland) 20(7), 1823 (2020)

    Article  Google Scholar 

  28. Li, L., et al.: Bifurcation behavior for mass detection in nonlinear electrostatically coupled resonators. Int. J. Non-Linear Mech. 119, 103366 (2020)

    Article  Google Scholar 

  29. Rabenimanana, T., et al.: Functionalization of electrostatic nonlinearities to overcome mode aliasing limitations in the sensitivity of mass microsensors based on energy localization. Appl. Phys. Lett. 117(3), 033502 (2020)

    Article  Google Scholar 

  30. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12(5), 672–680 (2003)

    Article  Google Scholar 

  31. Baguet, S., et al.: Nonlinear dynamics of micromechanical resonator arrays for mass sensing. Nonlinear Dyn. 95(2), 1203–1220 (2018)

    Article  Google Scholar 

  32. Younis, M., Abdel-Rahman, E., Nayfeh A.: Static and dynamic behavior of an electrically excited resonant microbeam. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2002)

  33. Younis, M., Abdel-Rahman, E., Nayfeh, A.: Dynamic simulations of a novel RF MEMS switch. NSTI-Nanotech, pp. 287–290 (2004)

  34. Bruno, et al.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324(1–2), 243–262 (2009)

    Google Scholar 

  35. Kacem, N., et al.: Nonlinear phenomena in nanomechanical resonators: mechanical behaviors and physical limitations. Mécan. Ind. 11(6), 521–529 (2011)

    Article  Google Scholar 

  36. Nayfeh, A.H.: Mook, D.: Nonlinear Oscillations. Clarendon (1981)

  37. Kacem, N., et al.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors. Nanotechnology 20(27), 275501 (2009)

    Article  Google Scholar 

  38. Bitar, D., Kacem, N., Bouhaddi, N.: Investigation of modal interactions and their effects on the nonlinear dynamics of a periodic coupled pendulums chain. Int. J. Mech. Sci. 127, 130–141 (2017)

    Article  Google Scholar 

  39. Jaber, N., et al.: Higher order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation. J. Micromech. Microeng. 26(2), 025008 (2016)

    Article  Google Scholar 

  40. Jaber, N., et al.: Efficient excitation of micro/nano resonators and their higher order modes. Sci Rep 9(1), 319 (2019)

    Article  Google Scholar 

  41. Hammad, B.K., Abdel-Rahman, E.M., Nayfeh, A.H.: Modeling and analysis of electrostatic MEMS filters. Nonlinear Dyn. 60(3), 385–401 (2009)

    Article  Google Scholar 

  42. Zhao, C., et al.: A three degree-of-freedom weakly coupled resonator sensor with enhanced stiffness sensitivity. J. Microelectromech. Syst. 25(1), 38–51 (2016)

    Article  Google Scholar 

  43. Thiruvenkatanathan, P., et al.: Limits to mode-localized sensing using micro- and nanomechanical resonator arrays. J. Appl. Phys. 109(10), 114–845 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the National Natural Science Foundation of China (No. U1930206), Natural Science Foundation Project of Liaoning Province (No. 2019KF0203) and International Scientific and Technological Cooperation Projects (2019KW-048). This project was also performed in cooperation with EUR EIPHI Program, Europe (Contract No. ANR 17-EURE-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Coefficients and forcing terms of the method of multiple scales

The parameters in Eq. (22) are defined as:

$$ \begin{gathered} k_{11} = \sqrt {\lambda_{1,3}^{4} - N_{1} \mathop \int \limits_{0}^{1} w^{\prime\prime}_{s1} \left( x \right)\phi_{1,j} dx - 2\alpha_{2} V_{dc}^{2} \mathop \int \limits_{0}^{1} \left( {\phi_{1,3}^{2} H_{1} \left( x \right)\left( {1 + 3w_{s1} (x) + 6w_{s1}^{2} (x)} \right)} \right)dx - \alpha_{1} \mathop \int \limits_{0}^{1} \left( {q_{1,3} \phi^{\prime\prime}_{1,3} } \right)\phi_{1,3} \mathop \int \limits_{0}^{1} \left( {w^{\prime}_{s1} \left( x \right)^{2} } \right)dxdx - \alpha_{1} \mathop \int \limits_{0}^{1} \left( {w^{\prime\prime}_{s1} \left( x \right)} \right)\phi_{1,3} \mathop \int \limits_{0}^{1} \left( {2q_{1,3} \phi^{\prime}_{1,3} w^{\prime}_{s1} \left( x \right)} \right)dxdx} \, \hfill \\ k_{12} = - \alpha_{1} \mathop \int \limits_{0}^{1} \left( {q_{1,3} \phi^{\prime\prime}_{1,3} } \right)\phi_{1,3} \mathop \int \limits_{0}^{1} \left( { + 2q_{1,3} \phi^{\prime}_{1,3} w^{\prime}_{s1} \left( x \right)} \right)dxdx \hfill \\ \quad \quad - \alpha_{1} \mathop \int \limits_{0}^{1} \left( {w^{\prime\prime}_{s1} \left( x \right)} \right)\phi_{1,3} \mathop \int \limits_{0}^{1} \left( {q_{1,3}^{2} \phi_{1,3}^{^{\prime}2} } \right)dxdx \hfill \\ \, \quad - 3\alpha_{2} V_{dc}^{2} q_{1,3}^{2} \mathop \int \limits_{0}^{1} (\phi_{1,3}^{3} H_{1} (x)(1 + 4w_{s1} (x)))dx \hfill \\ k_{13} = - \alpha_{1} \mathop \int \limits_{0}^{1} \left( {q_{1,3} \phi^{\prime\prime}_{1,3} } \right)\phi_{1,3} \mathop \int \limits_{0}^{1} \left( {q_{1,3}^{2} \phi_{1,3}^{^{\prime}2} } \right)dxdx \hfill \\ \quad \quad - 4\alpha_{2} V_{dc}^{2} \mathop \int \limits_{0}^{1} (\phi_{1,3}^{4} H_{1} (x))dx \hfill \\ k_{c1} = - \frac{{2V_{c}^{2} \alpha_{2} }}{{R^{3} }}\mathop \int \limits_{0}^{1} q_{1,3} \phi_{1,3} \phi_{1,3} H_{2} \left( x \right)dx \hfill \\ k_{c2} = \frac{{2V_{c}^{2} \alpha_{2} }}{{R^{3} }}\mathop \int \limits_{0}^{1} q_{2,2} \phi_{2,2} \phi_{1,3} H_{2} \left( x \right)dx \hfill \\ f_{1} = - 2\alpha_{2} V_{dc} V_{ac} \cos \left( {\Omega t} \right)\mathop \int \limits_{0}^{1} \left( {\phi_{1,3} H_{1} \left( x \right)\left. {\left( {1 + 2w_{s1} \left( x \right) + 3w_{s1}^{2} \left( x \right)} \right. + 4w_{s1}^{3} \left( x \right)} \right)} \right)dx \hfill \\ k_{21} = \sqrt {\lambda_{2,2}^{4} \delta^{2} - \alpha_{1} \mathop \int \limits_{0}^{1} \left( {q_{2,2} \phi^{\prime\prime}_{2,2} } \right)\phi_{2,2} \mathop \int \limits_{0}^{1} \left( {w^{\prime}_{s2} \left( x \right)^{2} } \right)dxdx - \alpha_{1} \mathop \int \limits_{0}^{1} \left( {w^{\prime\prime}_{s2} \left( x \right)} \right)\phi_{2,2} \mathop \int \limits_{0}^{1} \left( {2q_{2,2} \phi^{\prime}_{2,2} w^{\prime}_{s2} \left( x \right)} \right)dxdx - N_{2} \mathop \sum \limits_{i = 1}^{n} \mathop \int \limits_{0}^{1} \left( {q_{2,2} \phi^{\prime\prime}_{2,2} } \right)\phi_{2,2} dx} \hfill \\ k_{22} = - \alpha_{1} \mathop \int \limits_{0}^{1} \left( {q_{2,2} \phi^{\prime\prime}_{2,2} } \right)\phi_{2,2} \mathop \int \limits_{0}^{1} \left( {2q_{2,2} \phi^{\prime}_{2,2} w^{\prime}_{s2} \left( x \right)} \right)dxdx \hfill \\ \quad \quad - \alpha_{1} \mathop \int \limits_{0}^{1} \left( {w^{\prime\prime}_{s2} \left( x \right)} \right)\phi_{2,2} \mathop \int \limits_{0}^{1} \left( {q_{2,2}^{2} \phi^{\prime}_{2,2} } \right)dxdx \hfill \\ k_{23} = - \alpha_{1} \mathop \int \limits_{0}^{1} \left( {q_{2,2} \phi^{\prime\prime}_{2,2} } \right)\phi_{2,2} \mathop \int \limits_{0}^{1} \left( {q_{2,2}^{2} \phi^{\prime}_{2,2} } \right)dxdx \hfill \\ k_{c3} = \frac{{2V_{c}^{2} \alpha_{2} }}{{R^{3} \delta }}\mathop \int \limits_{0}^{1} \left( {q_{1,3} \phi_{1,3} } \right)\phi_{2,2} H_{2} \left( x \right)dx \hfill \\ k_{c4} = - \frac{{2V_{c}^{2} \alpha_{2} }}{{R^{3} \delta }}\mathop \int \limits_{0}^{1} \left( {q_{2,2} \phi_{2,2} } \right)\phi_{2,2} H_{2} \left( x \right)dx \hfill \\ \end{gathered} $$
(28)

Appendix B: Analytical solution using the method of multiple scales

The timescales Tn are introduced depending on the parameter ε and defined by:

$$ T_{n} = \varepsilon^{n} t \, \left( {\varepsilon < 1} \right) $$
(29)

The partial differential of time t becomes:

$$ \begin{gathered} \frac{d}{dt} = \frac{\partial }{{\partial T_{0} }}\frac{{dT_{0} }}{dt} + \frac{\partial }{{\partial T_{1} }}\frac{{dT_{1} }}{dt} + \frac{\partial }{{\partial T_{2} }}\frac{{dT_{2} }}{dt} + \cdots = D_{0} + \varepsilon D_{1} + \varepsilon^{2} D_{2} + \cdots \hfill \\ \frac{{d^{2} }}{{dt^{2} }} = D_{0}^{2} + 2\varepsilon D_{0} D_{1} + \varepsilon^{2} \left( {D_{1}^{2} + 2D_{0} D_{2} } \right) + \cdots \hfill \\ \end{gathered} $$
(30)

where σ1 is the detuning parameter in Eq. (23) and

$$ \sigma_{2} = \frac{{\omega_{1} - \omega_{2} }}{{\varepsilon^{2} }} $$
(31)

The solution of Eq. (22) is assumed by a second-order timescales form as follows:

$$ \begin{aligned} q_{1} & = q_{10} \left( {T_{0} ,T_{1} ,T_{2} } \right) + \varepsilon q_{11} \left( {T_{0} ,T_{1} ,T_{2} } \right) \\ \quad + \varepsilon^{2} q_{12} \left( {T_{0} ,T_{1} ,T_{2} } \right) \\ \end{aligned} $$
(32)
$$ \begin{aligned} q_{2} & = q_{20} \left( {T_{0} ,T_{1} ,T_{2} } \right) + \varepsilon q_{21} \left( {T_{0} ,T_{1} ,T_{2} } \right) \\ \quad + \varepsilon^{2} q_{22} \left( {T_{0} ,T_{1} ,T_{2} } \right) \\ \end{aligned} $$
(33)

By substituting Eqs. (32) and (33) into Eq. (22), the equations of each order of ε can be obtained:

Order ε0:

$$ D_{0}^{2} q_{10} + k_{11}^{2} q_{10} = 0 $$
(34)
$$ D_{0}^{2} q_{20} + k_{21}^{2} q_{20} = 0 $$
(35)

Order ε1:

$$ D_{0} \left( {D_{0} q_{11} + D_{1} q_{10} } \right) + D_{1} D_{0} q_{10} + k_{11}^{2} q_{11} = - k_{12} q_{10}^{2} $$
(36)
$$ D_{0} \left( {D_{0} q_{21} + D_{1} q_{20} } \right) + D_{1} D_{0} q_{20} + k_{21}^{2} q_{21} = - k_{22} q_{20}^{2} $$
(37)

Order ε2:

$$ \begin{gathered} D_{0} \left( {D_{0} q_{12} + D_{1} q_{11} + D_{2} q_{10} } \right) + D_{1} \left( {D_{0} q_{11} + D_{1} q_{10} } \right) + D_{2} D_{0} q_{10} + k_{11}^{2} q_{12} \hfill \\ \quad = - c_{1} D_{0} q_{10} - \left( {k_{c1} q_{10} + \kappa_{c2} q_{20} } \right) - k_{13} q_{10}^{3} - k_{12} q_{10} q_{11} - f_{1} \cos \left( {k_{11} T_{0} + \sigma_{1} T_{2} } \right) \hfill \\ \end{gathered} $$
(38)
$$ \begin{gathered} D_{0} \left( {D_{0} q_{22} + D_{1} q_{21} + D_{2} q_{20} } \right) + D_{1} \left( {D_{0} q_{21} + D_{1} q_{20} } \right) + D_{2} D_{0} q_{20} + k_{21}^{2} q_{22} \hfill \\ \quad = - c_{2} D_{0} q_{20} - \left( {k_{c3} q_{10} + k_{c4} q_{20} } \right) - k_{23} q_{20}^{3} - k_{22} q_{20} q_{21} \hfill \\ \end{gathered} $$
(39)

The solutions of Eqs. (34) and (35) are given by:

$$ q_{10} = X_{1} e^{{ik_{11} T_{0} }} + \overline{{X_{1} }} e^{{ - ik_{11} T_{0} }} $$
(40)
$$ q_{20} = X_{2} e^{{ik_{21} T_{0} }} + \overline{{X_{2} }} e^{{ - ik_{21} T_{0} }} $$
(41)

where X1 and X2 are complex functions and \(\overline{{X_{1} }}\) and \(\overline{{X_{2} }}\) are the complex conjugates. Then, substituting q10 and q20 into Eqs. (36) and (37) we obtain:

$$ D_{0}^{2} q_{11} + k_{11}^{2} q_{11} = - e^{{ - 2iT_{0} k_{11} }} k_{12} \overline{{X_{1} }}^{2} - 2k_{12} \overline{{X_{1} }} X_{1} - {\text{e}}^{{2iT_{0} k_{11} }} k_{12} X_{1}^{2} - 2i{\text{e}}^{{iT_{0} k_{11} }} k_{11} D_{1} X_{1} + 2i{\text{e}}^{{ - iT_{0} k_{11} }} k_{11} D_{1}^{2} \overline{{X_{1} }} X_{1} $$
(42)
$$ D_{0}^{2} q_{21} + k_{21}^{2} q_{21} = - e^{{ - 2iT_{0} k_{21} }} k_{22} \overline{{X_{2} }}^{2} - 2k_{22} \overline{{X_{2} }} X_{2} - {\text{e}}^{{2iT_{0} k_{21} }} k_{22} X_{2}^{2} - 2i{\text{e}}^{{iT_{0} k_{21} }} k_{21} D_{1} X_{2} + 2i{\text{e}}^{{ - iT_{0} k_{21} }} k_{21} D_{1}^{2} \overline{{X_{2} }} X_{2} $$
(43)

Eliminating the secular terms in Eqs. (42) and (43) results in:

$$ D_{1} X_{1} = D_{1} X_{2} = 0 $$
(44)

And the solutions of Eqs. (38) and (39) are:

$$ q_{11} = \frac{{{\text{e}}^{{ - 2iT_{0} k_{11} }} \overline{{X_{1} }}^{2} k_{12} }}{{3k_{11}^{2} }} - \frac{{2k_{12} \overline{{X_{1} }} X_{1} }}{{k_{11}^{2} }} + \frac{{{\text{e}}^{{2iT_{0} k_{11} }} k_{12} X_{1}^{2} }}{{3k_{11}^{2} }} $$
(45)
$$ q_{21} = \frac{{{\text{e}}^{{ - 2iT_{0} k_{21} }} \overline{{X_{2} }}^{2} k_{22} }}{{3k_{21}^{2} }} - \frac{{2k_{22} \overline{{X_{2} }} X_{2} }}{{k_{21}^{2} }} + \frac{{{\text{e}}^{{2iT_{0} k_{21} }} k_{22} X_{2}^{2} }}{{3k_{21}^{2} }} $$
(46)

By substituting the solutions of q11 and q21 into Eqs. (38) and (39), the secular terms can be obtained as:

$$ \begin{gathered} \frac{1}{2}e^{{iT_{0} \varepsilon^{2} \sigma_{1} }} f_{1} + k_{c1} X_{1} + ik_{11} c_{1} X_{1} - \frac{{10k_{12}^{2} \overline{{X_{1} }} X_{1}^{2} }}{{3k_{11}^{2} }} \hfill \\ \quad + 3k_{13} \overline{{X_{1} }} X_{1}^{2} + k_{c2} e^{{ - iT_{0} \varepsilon^{2} \sigma_{2} }} X_{2} + 2ik_{11} D_{2} X_{1} + D_{1}^{2} X_{1} = 0 \hfill \\ \end{gathered} $$
(47)
$$ \begin{gathered} k_{c3} e^{{iT_{0} \varepsilon^{2} \sigma_{2} }} X_{1} + k_{c4} X_{2} + ik_{21} c_{2} X_{2} - \frac{{10k_{22}^{2} \overline{{X_{2} }} X_{2}^{2} }}{{3k_{21}^{2} }} \hfill \\ \quad + 3k_{23} \overline{{X_{2} }} X_{2}^{2} + 2ik_{21} D_{2} X_{2} + D_{1}^{2} X_{2} = 0 \hfill \\ \end{gathered} $$
(48)

Let X1 and X2 be as follows:

$$ X_{1} = \frac{{a_{1} }}{2}e^{{i\gamma_{1} }} ,X_{2} = \frac{{a_{2} }}{2}e^{{i\gamma_{2} }} $$
(49)

Substituting Eq. (49) into Eqs. (47) and (48) and multiplying Eq. (47) and Eq. (48) by \({\text{e}}^{{ - {\text{i}}\gamma_{1} }}\) and \({\text{e}}^{{ - {\text{i}}\gamma_{2} }}\), respectively, then separating the real part and the imaginary part, the following relationships can be obtained:

$$ \begin{gathered} \frac{1}{2}\cos \left( {\phi_{2} } \right)f_{1} - \frac{{5a_{1}^{3} k_{12}^{2} }}{{12\kappa_{11}^{2} }} + \frac{3}{8}a_{1}^{3} k_{13} + \frac{1}{2}a_{1} k_{c1} \hfill \\ \quad + \frac{1}{2}a_{2} \cos \left( {\phi_{1} } \right)k_{c2} - a_{1} k_{11} \sigma_{1} + a_{1} k_{11} \phi^{\prime}_{2} = 0 \hfill \\ \end{gathered} $$
(50)
$$ \begin{gathered} \frac{1}{2}\sin \left( {\phi_{2} } \right)f_{1} - \frac{1}{2}a_{2} \sin \left( {\phi_{1} } \right)k_{c2} \hfill \\ \quad + \frac{1}{2}a_{1} k_{11} c_{1} + k_{11} a^{\prime}_{1} = 0 \hfill \\ \end{gathered} $$
(51)
$$ \begin{gathered} - \frac{{5a_{2}^{3} k_{22}^{2} }}{{12k_{21}^{2} }} + \frac{3}{8}a_{2}^{3} k_{23} + \frac{1}{2}a_{1} \cos \left( {\phi_{1} } \right)k_{c3} \hfill \\ \quad + \frac{1}{2}a_{2} k_{c4} - a_{2} k_{21} \sigma_{1} - a_{2} k_{21} \sigma_{2} + a_{2} k_{21} \phi^{\prime}_{1} + a_{2} k_{21} \phi^{\prime}_{2} = 0 \hfill \\ \end{gathered} $$
(52)
$$ \frac{1}{2}a_{1} \sin \left( {\phi_{1} } \right)k_{c3} + \frac{1}{2}a_{2} k_{21} c_{2} + k_{21} a^{\prime}_{2} = 0 $$
(53)

where ϕ1 and ϕ2 are:

$$ \begin{gathered} \phi_{1} = T_{0} \varepsilon^{2} \sigma_{2} + \gamma_{1} - \gamma_{2} \hfill \\ \phi_{2} = T_{0} \varepsilon^{2} \sigma_{1} - \gamma_{1} \hfill \\ \end{gathered} $$
(54)

In the steady state, we have the conditions \(a^{\prime}_{1} = a^{\prime}_{2} = \phi^{\prime}_{1} = \phi^{\prime}_{2} = 0\); then, we get

$$ \sin \left( {\phi_{1} } \right) = - \frac{{a_{2} k_{21} c_{2} }}{{a_{1} k_{c3} }} $$
(55)
$$ \cos \left( {\phi_{1} } \right) = \frac{{10a_{2}^{3} k_{22}^{2} + 3a_{2} k_{21}^{2} \left( { - 3a_{2}^{2} k_{23} - 4k_{c4} + 8k_{21} \left( {\sigma_{1} + \sigma_{2} } \right)} \right)}}{{12a_{1} k_{21}^{2} k_{c3} }} $$
(56)
$$ \sin \left( {\phi_{2} } \right) = - \frac{{a_{1}^{2} k_{11} k_{c3} c_{1} + a_{2}^{2} k_{21} k_{c2} c_{2} }}{{a_{1} f_{1} k_{c3} }} $$
(57)
$$ \cos \left( {\phi_{2} } \right) = \frac{{\left( {\frac{{10a_{1}^{4} k_{12}^{2} }}{{k_{11}^{2} }} + 24a_{1}^{2} k_{11} \sigma_{1} + \frac{1}{{k_{c3} }}\left( \begin{gathered} - \frac{{10a_{2}^{4} k_{22}^{2} k_{c2} }}{{k_{21}^{2} }} + 3\left( {3a_{2}^{4} k_{23} k_{c2} - 3a_{1}^{4} k_{13} k_{c3} - 4a_{1}^{2} k_{c1} k_{c3} + 4a_{2}^{2} k_{c2} k_{c4} } \right) \hfill \\ - 24a_{2}^{2} k_{21} k_{c2} \left( {\sigma_{1} + \sigma_{2} } \right) \hfill \\ \end{gathered} \right)} \right)}}{{12a_{1} f_{1} }} $$
(58)

From \(\sin \left( {\phi_{1} } \right)^{2} + \cos \left( {\phi_{1} } \right)^{2} = 1\) and \(\sin \left( {\phi_{2} } \right)^{2} + \cos \left( {\phi_{2} } \right)^{2} = 1\), Eqs. (24) and (25) can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Song, J., Lyu, M. et al. An asymmetric mode-localized mass sensor based on the electrostatic coupling of different structural modes with distributed electrodes. Nonlinear Dyn 108, 61–79 (2022). https://doi.org/10.1007/s11071-021-07189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07189-2

Keywords

Navigation