Skip to main content
Log in

Adaptive robust fault-tolerant control scheme for spacecraft proximity operations under external disturbances and input saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study presents an adaptive robust fault-tolerant control (FTC) method for spacecraft proximity operations, in the presence of external disturbances, actuator faults, and input saturation. Firstly, a coupled 6-degrees-of-freedom dynamics model is constructed to show the relative motion of the pursuer spacecraft to the target spacecraft. To deal with actuator faults and external disturbances, a basic robust FTC method is designed. Subsequently, an adaptive robust FTC approach is developed to address the negative effect from the input saturation. In particular, by incorporating a novel dead-zone model to represent the saturation nonlinearity, an adaptive technology is applied to compensate for the nondifferentiable integral term in the saturation model. According to Lyapunov stability theory, all the signals in the whole system are proved to be ultimately bounded, and the relative motion tracking errors can converge to arbitrarily small neighborhood around the origin by choosing the suitable parameters. Last but not least, comparative simulations are carried out to validate the superiority of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Shao, X., Hu, Q.: Immersion and invariance adaptive pose control for spacecraft proximity operations under kinematic and dynamic constraints. IEEE Trans. Aerosp. Electron. Syst. (2021). https://doi.org/10.1109/TAES.2021.3053134

    Article  Google Scholar 

  2. Xia, K., Zou, Y.: Adaptive fixed-time fault-tolerant control for noncooperative spacecraft proximity using relative motion information. Nonlinear Dyn. 100(3), 2521–2535 (2020)

    Article  Google Scholar 

  3. Hu, Q., Liu, Y., Zhang, Y.: Velocity-free saturated control for spacecraft proximity operations with guaranteed safety. IEEE Trans. Syst. Man Cybern. Syst. (2021). https://doi.org/10.1109/TSMC.2021.3050507

    Article  Google Scholar 

  4. Zenteno-Torres, J., Cieslak, J., Henry, D., Dávila, J.: A tracking backstepping sliding-mode control for spacecraft rendezvous with a passive target. In: 12th International Conference on Control, pp. 69–74 (2018)

  5. Safa, A., Baradarannia, M., Kharrati, H., Khanmohammadi, S.: Global attitude stabilization of rigid spacecraft with unknown input delay. Nonlinear Dyn. 82, 1623–1640 (2015)

    Article  MathSciNet  Google Scholar 

  6. Sun, L., Huo, W., Jiao, Z.: Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint. IEEE Trans. Ind. Electron. 64(1), 480–492 (2017)

    Article  Google Scholar 

  7. Liu, K., Wang, Y., Ji, H., Wang, S.: Adaptive saturated tracking control for spacecraft proximity operations via integral terminal sliding mode technique. Int. J. Robust Nonlinear Control 31, 9372–9396 (2021)

    Article  MathSciNet  Google Scholar 

  8. Sun, L., Huo, W., Jiao, Z.: Robust nonlinear adaptive relative pose control for cooperative spacecraft during rendezvous and proximity operations. IEEE Trans. Control Syst. Technol. 25(5), 1840–1847 (2016)

    Article  Google Scholar 

  9. Zhao, L., Liu, G.: Adaptive finite-time attitude tracking control for state constrained rigid spacecraft systems. IEEE Trans Circuits Syst. II Exp. Briefs (2021). https://doi.org/10.1109/TCSII.2021.3070799

    Article  Google Scholar 

  10. Wang, Y., Ji, H.: Integrated relative position and attitude control for spacecraft rendezvous with iss and finite-time convergence. Aerosp. Sci. Technol. 85, 234–245 (2019)

    Article  Google Scholar 

  11. Nasir, A., Atkins, E.M., Kolmanovsky, I.: Robust science-optimal spacecraft control for circular orbit missions. IEEE Trans. Syst. Man Cybern. Syst. 50(3), 923–934 (2020)

    Article  Google Scholar 

  12. Xia, K., Zou, Y.: Robust adaptive terminal sliding mode control on SE(3) for autonomous spacecraft rendezvous and docking. Nonlinear Dyn. 83, 2263–2279 (2016)

    Article  MathSciNet  Google Scholar 

  13. Zhang, C., Dai, M.-Z., Wu, J., Xiao, B., Li, B., Wang, M.: Neural-networks and event-based fault-tolerant control for spacecraft attitude stabilization. Aerosp. Sci. Technol. 114, 106746 (2021)

    Article  Google Scholar 

  14. Zappulla, R., Park, H., Llop, J.V., Romano, M.: Real-time autonomous spacecraft proximity maneuvers and docking using an adaptive artificial potential field approach. IEEE Trans. Control Syst. Technol. 27(6), 2598–2605 (2019)

    Article  Google Scholar 

  15. Zhang, C., Wang, J., Zhang, D., Shao, X.: Fault-tolerant adaptive finite-time attitude synchronization and tracking control for multi-spacecraft formation. Aerosp. Sci. Technol. 73, 197–209 (2018)

    Article  Google Scholar 

  16. Gao, H., Xia, Y., Zhang, J., Cui, B.: Finite-time fault-tolerant output feedback attitude control of spacecraft formation with guaranteed performance. J. Robust Nonlinear Control 31(10), 4664–4688 (2021)

    Article  MathSciNet  Google Scholar 

  17. Li, B., Hu, Q., Yu, Y., Ma, G.: Observer-based fault-tolerant attitude control for rigid spacecraft. IEEE Trans. Aerosp. Electron. Syst. 53(5), 2572–2582 (2017)

    Article  Google Scholar 

  18. Liu, K., Wang, R., Wang, X., Wang, X.: Anti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbances. Aerosp. Sci. Technol. 115, 106790 (2021)

    Article  Google Scholar 

  19. Benchaita, H., Ladaci, S.: Fractional adaptive SMC fault tolerant control against actuator failures for wing rock supervision. Aerosp. Sci. Technol. 114, 106745 (2021)

    Article  Google Scholar 

  20. Hu, Q., Shao, X., Chen, W.H.: Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode. IEEE Trans. Aerosp. Electron. Syst. 54(1), 2–17 (2018)

    Article  Google Scholar 

  21. Van, M., Mavrovouniotis, M., Ge, S.S.: An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1448–1458 (2019)

    Article  Google Scholar 

  22. Xia, K., Zou, Y.: Adaptive saturated fault-tolerant control for spacecraft rendezvous with redundancy thrusters. IEEE Trans. Control Syst. Technol 29(2), 502–513 (2021)

    Article  Google Scholar 

  23. Liu, K., Wang, R.: Antisaturation command filtered backstepping control based disturbance rejection for a quadarotor UAV. IEEE Trans. Circuits Syst. II Exp. Briefs 68(12), 3577–3581 (2021)

    Article  Google Scholar 

  24. Zou, X., Guo, C., Li, Z.-G., Ouyang, X.-Y., Wu, L.-B.: Observer-based adaptive fuzzy finite-time prescribed performance tracking control for strict-feedback systems with input dead-zone and saturation. Nonlinear Dyn. 103, 1645–1661 (2021)

    Article  Google Scholar 

  25. Liu, K., Wang, X., Wang, R., Sun, G., Wang, X.: Antisaturation finite-time attitude tracking control based observer for a quadrotor. IEEE Trans. Circuits Syst. II Exp. Briefs 68(6), 2047–2051 (2021)

    Article  Google Scholar 

  26. Cao, L., Xiao, B., Golestani, M.: Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dyn. 100(3), 2505–2519 (2020)

    Article  Google Scholar 

  27. Johansen, T.A., Fossen, T.I.: Control allocation-a survey. Automatica 49(5), 1087–1103 (2013)

    Article  MathSciNet  Google Scholar 

  28. Gui, H., de Ruiter, A.H.: Adaptive fault-tolerant spacecraft pose tracking with control allocation. IEEE Trans. Control Syst. Technol. 27(2), 479–494 (2019)

    Article  Google Scholar 

  29. Hamayun, M.T., Edwards, C., Alwi, H.: Design and analysis of an integral sliding mode fault-tolerant control scheme. IEEE Trans. Autom. Control 57(7), 1783–1789 (2012)

    Article  MathSciNet  Google Scholar 

  30. Wang, Q., Su, C.Y.: Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations. Automatica 42(5), 859–867 (2006)

    Article  MathSciNet  Google Scholar 

  31. Al Janaideh, M., Rakotondrabe, M., Aljanaideh, O.: Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model. IEEE Trans. Control Syst. Technol. 24(2), 428–439 (2015)

    Article  Google Scholar 

  32. Liu, W., Ji, H., Ma, Y.: Adaptive tracking of stochastic nonlinear systems with Prandtl-Ishlinskii hysteresis. Int. J. Robust Nonlinear Control 22(16), 1779–1789 (2012)

    Article  MathSciNet  Google Scholar 

  33. Schaub, H., Junkins, J. L.: Analytical Mechanics of Space Systems. AIAA Educational Series, pp. 593–604 (2003)

  34. Zhou, N., Cheng, X., Xia, Y., Liu, Y.: Fully adaptive-gain-based intelligent failure-tolerant control for spacecraft attitude stabilization under actuator saturation. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2969281

    Article  Google Scholar 

  35. Zhang, X., Zhou, Z.: Integrated fault estimation and fault tolerant attitude control for rigid spacecraft with multiple actuator faults and saturation. IET Control Theory Appl. 13(15), 2365–2375 (2019)

    Article  Google Scholar 

  36. Ge, S.S., Wang, C.: Adaptive neural network control of uncertain MIMO non-linear systems. IEEE Trans. Neural Netw. 15(3), 674–692 (2004)

    Article  Google Scholar 

  37. Wang, C.C., Yang, G.H.: Adaptive decentralized fault tolerant tracking control for large-scale nonlinear systems with input quantization. Int. J. Robust Nonliner Control 28(9), 3342–3356 (2018)

    Article  MathSciNet  Google Scholar 

  38. Khalil, H. K.: Nonlinear Systems. Upper Saddle River (2002)

  39. Hu, Q., Shao, X., Zhang, Y., Guo, L.: Nussbaum-type function-based attitude control of spacecraft with actuator saturation. Int. J. Robust Nonlinear Control 28(8), 2927–2949 (2018)

    Article  MathSciNet  Google Scholar 

  40. Du, J., Hu, X., Sun, Y.: Adaptive robust nonlinear control design for course tracking of ships subject to external disturbances and input saturation. IEEE Trans. Syst. Man Cybern. Syst. 50(1), 193–202 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31671586).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, K. & Ji, H. Adaptive robust fault-tolerant control scheme for spacecraft proximity operations under external disturbances and input saturation. Nonlinear Dyn 108, 207–222 (2022). https://doi.org/10.1007/s11071-021-07182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07182-9

Keywords

Navigation