Skip to main content
Log in

Robust adaptive terminal sliding mode control on SE(3) for autonomous spacecraft rendezvous and docking

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the relative position and attitude tracking control in the framework of geometric mechanics for autonomous rendezvous and docking of two spacecraft where the relative motion of the leader and follower spacecraft tracks a desired time-varying trajectory. Using exponential coordinates on the Lie group \(\mathrm {SE(3)}\), which is the set of positions and orientations in three-dimensional Euclidean space, and the adjoint operator on the Lie algebra \(\mathfrak {se}(3)\), the relative coupled translational and rotational dynamics is modeled. Based on the terminal sliding mode, a robust adaptive terminal sliding mode control scheme on \(\mathrm {SE(3)}\) is proposed to ensure the finite-time convergence of the relative motion tracking errors using limited control inputs despite the presence of unknown disturbances and moment of inertia uncertainty. The control scheme is then applied to a situation where the follower spacecraft synchronizes its attitude motion with the leader, while maintaining a constant relative position with respect to the leader. The robustness of the controller is established using Lyapunov stability theory. Simulation results of close range rendezvous and docking verify that the proposed control scheme can achieve faster and more accurate tracking performance while consuming less control energy than the conventional terminal sliding mode control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Souza, C.D., Hannak, C., Spehar, P.: Orion rendezvous, proximity operations and docking design and analysis. In: AIAA Guidance, Navigation and Control Conference and Exhibit, South Carolina, USA, AIAA 2007–6683 (2007)

  2. Goodman, J.L.: History of space shuttle rendezvous and proximity operations. J. Spacecr. Rockets 43(5), 944–959 (2006). doi:10.2514/1.19653

  3. Singla, P., Subbarao, K., Junkins, J.L.: Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty. J. Guid. Control Dyn. 29(4), 892–902 (2006). doi:10.2514/1.17498

  4. Wang, P.K.C., Hadaegh, F.Y., Lau, K.: Synchronized formation rotation and attitude control of multiple free-flying spacecraft. J. Guid. Control Dyn. 22(1), 28–35 (1999). doi:10.2514/2.4367

    Article  Google Scholar 

  5. Xin, M., Pan, H.: Integrated nonlinear optimal control of spacecraft in proximity operations. Int. J. Control 83(2), 347–363 (2012). doi:10.1080/00207170903171314

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, G.-Q., Wu, S.-N., Wu, Z.-G.: Robust finite-time control for spacecraft with coupled translation and attitude dynamics. Math. Probl. Eng. 2013, 1–7 (2013). doi:10.1155/2013/707485

  7. Slotine, J.J., Li, W.: Applied Nonlinear Control, 2nd edn. American Institute of Physics, New York (2005)

    MATH  Google Scholar 

  8. Chen, C.-L., Chang, C.-W., Yau, H.-T.: Terminal sliding mode control for aeroelastic systems. Nonlinear Dyn. 70(3), 2015–2026 (2012). doi:10.1007/s11071-012-0593-x

    Article  MathSciNet  Google Scholar 

  9. Hui, L., Li, J.: Terminal sliding mode control for spacecraft formation flying. IEEE Trans. Aerosp. Electron. Syst. 45(3), 835–846 (2009). doi:10.1109/TAES.2009.5259168

    Article  Google Scholar 

  10. Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 80(1–2), 669–683 (2015). doi:10.1007/s11071-015-1897-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu, X., Man, Z.: Variable Structure Systems with Terminal Sliding Modes. Lecture Notes in Control and Information Sciences, vol. 274, pp. 109–127 (2002)

  12. Song, Z., Li, H., Sun, K.: Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique. ISA Trans. 53(1), 117–124 (2014)

    Article  Google Scholar 

  13. Huang, J., Sun, L., Han, Z., Liu, L.: Adaptive terminal sliding mode control for nonlinear differential inclusion systems with disturbance. Nonlinear Dyn. 72(1–2), 221–228 (2013). doi:10.1007/s11071-012-0706-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang, L., Li, T., Li, Z., Li, R.: Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems. Nonlinear Dyn. 74(4), 991–1002 (2013). doi:10.1007/s11071-013-1017-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, J., Sun, Z.: 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying. Acta Astronaut. 73, 76–87 (2012)

    Article  Google Scholar 

  16. Sanyal, A.K., Nordkvist, N., Chyba, M.: An almost global tracking control scheme for maneuverable autonomous vehicles and its discretization. IEEE Transactions on Automatic Control. 56, 457–462 (2011). doi:10.1109/TAC.2010.2090190

    Article  MathSciNet  Google Scholar 

  17. Sanyal, A.K., Nordkvist, N., Chyba, M.: A Lie group variational integrator for rigid body motion in SE(3) with applications to underwater vehicle dynamics. In: IEEE Conference on Decision and Control, pp. 5414–5419 (2010). doi:10.1109/CDC.2010.5717622

  18. Lee, T., Leok, M., Mcclamroch, N.H.: Dynamics of connected rigid bodies in a perfect fluid. In: American Control Conference, pp. 408–413 (2009)

  19. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Bloch, A.M., Crouch, P.: Nonholonomic Mechanics and Control and Control. Springer, New York (2003)

    Book  MATH  Google Scholar 

  21. Lee, D., Cochran, J.E., No, T.S.: Robust position and attitude control for spacecraft formation flying. J. Aerosp. Eng. 25(2), 436–447 (2012). doi:10.1061/(ASCE)AS.1943-5525.0000146

    Article  Google Scholar 

  22. Park, H.-E., Park, S.-Y., Park, C., Kim, S.-W.: Development of integrated orbit and attitude software-in-the-loop simulator for satellite formation flying. J. Astron. Space Sci. 20(1), 1–10 (2013). doi:10.5140/JASS.2013.30.1.001

    Article  Google Scholar 

  23. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Springer, New York (2005)

    Book  MATH  Google Scholar 

  24. Carpenter, J.R.: Decentralized control of satellite formations. Int. J. Robust Nonlinear Control 12, 141–161 (2002). doi:10.1002/rnc.680

  25. Zhang, F., Duan, G.-R., Hou, M.: Integrated relative position and attitude control of spacecraft in proximity operation missions with control saturation. Int. J. Innov. Comput. Inf. Control 8(5), 3537–3551 (2012)

    Google Scholar 

  26. Zhou, J., Wen, C.: Adaptive Backstepping Control of Uncertain Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  27. Nazari, M., Butcher, E.A.: Analysis of stability and hopf bifurcation of delayed feedback spin stabilization of a rigid spacecraft. Nonlinear Dyn. 73(3), 801–817 (2013). doi:10.1007/s11071-013-1006-5

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee, D., Sanyal, A.K., Butcher, E.A., Scheeres, D.J.: Almost global asymptotic tracking control for spacecraft body-fixed hovering over an asteroid. Aerosp. Sci. Technol. 38, 105–115 (2014). doi:10.1016/j.ast.2014.07.013

    Article  Google Scholar 

  29. Lee, D., Sanyal, A.K., Butcher, E.A.: Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance. J. Guid. Control Dyn. 38(4), 587–600 (2015). doi:10.2514/1.G000101

    Article  Google Scholar 

  30. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 2nd edn, pp. 553–554. Space Technology Library, El Segundo (2004)

    Google Scholar 

  31. Sanyal, A.K., Lee, T., Leok, M., McClamroch, N.H.: Global optimal attitude estimation using uncertainty ellipsoids. Syst. Control Lett. 57, 236–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bullo, F., Murray, R.M.: Proportional derivative (PD) control on the Euclidean group. In: European Control Conference, pp. 1091–1097 (1995)

  33. Brás, S., Izadi, M., Silvestre, C., Sanyal, A., Oliveira, P.: Nonlinear observer for 3d rigid body motion. In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference On, pp. 2588–2593 (2013). doi:10.1109/CDC.2013.6760272

  34. Wu, S.-N., Sun, X.-Y., Sun, Z.-W., Chen, C.-C.: Robust sliding mode control for spacecraft global fast-tracking manoeuvre. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 225(7), 749–759 (2012)

    Article  Google Scholar 

  35. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000). doi:10.1137/S0363012997321358

    Article  MathSciNet  MATH  Google Scholar 

  36. Yu, S., Yu, X., Zadeh, B., Mand, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 31(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nekoukar, V., Erfanian, A.: Adaptive fuzzy terminal sliding mode control for a class of mimo uncertain nonlinear systems. Fuzzy Sets Syst. 179(1), 34–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu, X., Wu, Y., Zhihong, M.: On global stabilization of nonlinear dynamical systems. In: Variable Structure Systems, Sliding Mode and Nonlinear Control, Lecture Notes in Control and Information Science, vol. 247, pp. 109–122 (1999)

  39. Gao, W., Hung, J.C.: Variable structure control of nonlinear systems: a new approach. Aerosp. Sci. Technol. 40(1), 45–55 (1993). doi:10.1109/41.184820

    Google Scholar 

  40. Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011). doi:10.1109/TIE.2011.2107719

    Article  Google Scholar 

  41. Gonnaud, J.L., Pascal, V.: ATV guidance, navigation and control for rendezvous with ISS. In: Proceedings of the 4th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, Noodwijk, The Netherlands, p. 425 (1999)

  42. Pinard, D., Reynaud, S., Delpy, P., Strandmoe, S.E.: Accurate and autonomous navigation for the ATV. Aerosp. Sci. Technol. 11(6), 490–498 (2007)

    Article  Google Scholar 

  43. Astrom, K.J., Wittenmar, B.: Adaptive Control, 2nd edn. Addison-Wesley, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daero Lee.

Appendix

Appendix

The adjoint operator on the Lie algebra \(\mathfrak {se}(3)\) can be obtained as a derivative of the adjoint action of \(\mathrm {SE(3)}\) on \(\mathfrak {se}(3)\) via the exponential map below (Eq. 75). Let \({\varvec{g}} = \exp (\epsilon {\varvec{Y}}) \) where \({\varvec{Y}} \in \mathfrak {se}(3)\) and \(\epsilon \in \mathbb {R}\) and let \({\varvec{X}} \in \mathbb {R}^6\). From (12);

$$\begin{aligned} \mathrm {Ad}_{{\varvec{g}}} {\varvec{X}}= \left( \mathrm {expm}(\epsilon {\varvec{Y}}) {\varvec{X}} \exp (-\epsilon {\varvec{Y}})\right) = {\varvec{g}} {\varvec{X}} {\varvec{g}}^{-1}. \end{aligned}$$
(75)

The derivative of this adjoint evaluated at \(\epsilon =0 \) is defined to be the adjoint operation on the Lie algebra, and is given by

$$\begin{aligned}&\mathrm {ad}_{{\varvec{Y}}} {\varvec{X}}: = \frac{d}{d\epsilon } (\mathrm {expm}(\epsilon {\varvec{Y}}) {\varvec{X}} \mathrm {expm}(-\epsilon {\varvec{Y}}))|_{\epsilon =0}\nonumber \\&\quad = {\varvec{Y}}{\varvec{X}} - {\varvec{X}}{\varvec{Y}}. \end{aligned}$$
(76)

If \({\varvec{X}}={\varvec{\eta }}^\vee \in \mathfrak {se}(3)\) for some \({\varvec{\eta }}\in \mathbb {R}^6\), and if

$$\begin{aligned} {\varvec{Y}} = {\varvec{\zeta }}^\vee = \begin{bmatrix}{\varvec{{\varTheta }}}^\times&{\varvec{\beta }}\\ 0_{1\times 3}&0 \end{bmatrix}\in \mathfrak {se}(3), \end{aligned}$$
(77)

then this operator can be expressed by the matrix

$$\begin{aligned} \mathrm {ad}_\zeta = \begin{bmatrix}{\varvec{{\varTheta }}}^\times&0_{3\times 3}\\ {\varvec{\beta }}^\times&{\varvec{{\varTheta }}}^\times \end{bmatrix}, \end{aligned}$$
(78)

such that

$$\begin{aligned} \mathrm {ad}_{{\varvec{\zeta }}}{\varvec{\eta }} = \Big ({\varvec{Y}} {\varvec{X}} - {\varvec{X}} {\varvec{Y}}\Big )^| . \end{aligned}$$
(79)

The time derivative of the adjoint action \(\mathrm {Ad}_{h^{-1}}{\varvec{\xi }}^0\) in (32) is derived from the adjoint operation on the Lie algebra. Taking the time derivative of \(\mathrm {Ad}_{h^{-1}}{\varvec{\xi }}^0\)

(80)

Since \(\frac{\text{ d }}{{\text{ d }}t} {\varvec{h}}^{-1} = -{\varvec{h}}^{-1}\dot{{\varvec{h}}} {\varvec{h}}^{-1} = -{\tilde{{\varvec{\xi }}}}^\vee {\varvec{h}}^{-1}\),

(81)

Thus, Eq. (81) is arranged by using (79) and (12) as

$$\begin{aligned} \frac{\text{ d }}{{\text{ d }}t}{\mathrm {Ad}_{{\varvec{h}}^{-1}}{\varvec{\xi }}^0} =&-\mathrm {ad}_{{\tilde{{\varvec{\xi }}}}} \mathrm {Ad}_{ {\varvec{h}}^{-1}}{\varvec{\xi }}^0 + \mathrm {Ad}_{{\varvec{h}}^{-1}}\dot{{\varvec{\xi }}}^0 \nonumber \\ =&-\mathrm {ad}_{{\varvec{\xi }}} \mathrm {Ad}_{{\varvec{h}}^{-1}}{\varvec{\xi }}^0 + \mathrm {Ad}_{{\varvec{h}}^{-1}}\dot{{\varvec{\xi }}}^0. \end{aligned}$$
(82)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Vukovich, G. Robust adaptive terminal sliding mode control on SE(3) for autonomous spacecraft rendezvous and docking. Nonlinear Dyn 83, 2263–2279 (2016). https://doi.org/10.1007/s11071-015-2479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2479-1

Keywords

Navigation