Skip to main content
Log in

Global attitude stabilization of rigid spacecraft with unknown input delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Global attitude stabilization of a rigid spacecraft with unknown actuator delay time is an important problem that has rarely been studied. In this paper, first we investigate a Lyapunov-based controller for attitude regulation of a rigid spacecraft with delayed inputs. Simple conditions for global asymptotical stability are obtained by assuming that the true delay value is unknown, but approximation of its upper bound is available. It is also shown that a proper design of the controller prevents the unwinding phenomenon. Then, we extend the results for the system while taking disturbance effects into account. Based on Lyapunov–Krasovskii methodology, it is proven that the proposed controller can drive the closed-loop trajectories to a small region in the neighborhood of the origin in the presence of external disturbances and model uncertainties. Various numerical simulations are carried out to illustrate the effectiveness of the proposed control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C :

Direction cosine matrix

:

Principal axis of rotation

f, g :

Generic functions

I :

\(3\times 3\) Identity matrix

J :

Nominal inertial matrix

\(J_\mathrm{r}\) :

Real inertial matrix

P :

Positive definite controller gain matrix

\(\mathfrak {R}^n\) :

n-Dimensional space of real vectors

\(\mathfrak {R}_+\) :

Set of nonnegative real numbers

T :

Actuator torque vector \([T_1, T_2, T_3]^T\)

\(T_\mathrm{d}\) :

Disturbance torque

\(T_\mathrm{g}\) :

Gravity gradient torque

t :

Time

V, v :

Lyapunov function (functional)

\(\gamma \) :

Positive scalar constant

\(\kappa \) :

\(\mathcal {K}_\infty \) Function

\(\varrho \) :

Negative controller gain scalar

\(\sigma \) :

Modified Rodrigues parameter vector \([\sigma _1, \sigma _2, \sigma _3]^T\)

\(\tau \) :

Time delay

\(\varPhi \) :

Principal rotation angle

\(\omega \) :

Angular velocity vector, \([\omega _1, \omega _2, \omega _3]^T\)

References

  1. Ailon, A., Segev, R., Arogeti, S.: A simple velocity-free controller for attitude regulation of a spacecraft with delayed feedback. IEEE Trans. Autom. Control 49(1), 125–130 (2004). doi:10.1109/TAC.2003.821406

    Article  MathSciNet  Google Scholar 

  2. Aleksandrov, A.Y., Zhabko, A.P.: Delay-independent stability of homogeneous systems. Appl. Math. Lett. 34, 43–50 (2014). doi:10.1016/j.aml.2014.03.016

    Article  MathSciNet  Google Scholar 

  3. Artstein, Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Autom. Control 27(4), 869–879 (1982). doi:10.1109/TAC.1982.1103023

    Article  MATH  MathSciNet  Google Scholar 

  4. Bahrami, S., Namvar, M., Aghili, F.: In: IEEE International Conference on Robotics and Automation (ICRA), Attitude control of satellites with delay in attitude measurement, pp. 947–952. IEEE, Karlsruhe (2013). doi:10.1109/ICRA.2013.6630687

  5. Bekiaris-Liberis, N.: Simultaneous compensation of input and state delays for nonlinear systems. Syst. Control Lett. 73, 96–102 (2014). doi:10.1016/j.sysconle.2014.08.014

    Article  MATH  MathSciNet  Google Scholar 

  6. Bekiaris-Liberis, N., Krstic, M.: Nonlinear Control under Nonconstant Delays. SIAM, Philadelphia, PA (2013)

    Book  MATH  Google Scholar 

  7. Bharadwaj, S., Osipchuk, M., Mease, K.D., Park, F.C.: Geometry and inverse optimality in global attitude stabilization. J. Guid. Control Dyn. 21(6), 930–939 (1998). doi:10.2514/2.4327

    Article  Google Scholar 

  8. Bustan, D., Sani, S., Pariz, N.: Adaptive fault-tolerant spacecraft attitude control design with transient response control. IEEE/ASME Trans. Mechatron. 19(4), 1404–1411 (2014). doi:10.1109/TMECH.2013.2288314

    Article  Google Scholar 

  9. Bustan, D., Sani, S., Pariz, N.: Immersion and invariance based fault tolerant adaptive spacecraft attitude control. Int. J. Control Autom. Syst. 12(2), 333–339 (2014). doi:10.1007/s12555-012-0536-9

    Article  Google Scholar 

  10. Chen, W., Jiao, L., Li, J., Li, R.: Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40(3), 939–950 (2010). doi:10.1109/TSMCB.2009.2033808

    Article  Google Scholar 

  11. Chen, Z., Cong, B., Liu, X.: A robust attitude control strategy with guaranteed transient performance via modified Lyapunov-Based control and integral sliding mode control. Nonlinear Dyn. 78(3), 2205–2218 (2014). doi:10.1007/s11071-014-1598-4

    Article  MathSciNet  Google Scholar 

  12. Chunodkar, A.A., Akella, M.R.: Attitude stabilization with unknown bounded delay in feedback control implementation. J. Guid. Control Dyn. 34(2), 533–542 (2011). doi:10.2514/1.50352

    Article  Google Scholar 

  13. Fischer, N.: Lyapunov-based control of saturated and time-delayed nonlinear systems. Ph.D. thesis, Graduate School, University of Florida (2012). Available at: http://ncr.mae.ufl.edu/dissertations/nic.pdf

  14. Forbes, J.R.: Passivity-based attitude control on the special orthogonal group of rigid-body rotations. J. Guid. Control Dyn. 36(6), 1596–1605 (2013). doi:10.2514/1.59270

    Article  MathSciNet  Google Scholar 

  15. Fortescue, P., Swinerd, G., Stark, J. (eds.): Spacecraft Systems Engineering, 4th edn. Wiley, United Kingdom (2011)

    Google Scholar 

  16. Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control:A Lyapunov-Based Approach. Princeton University Press, New Jersey (2008)

    Google Scholar 

  17. Hu, Q., Li, B., Zhang, A.: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73(1–2), 53–71 (2013). doi:10.1007/s11071-013-0766-2

    Article  MATH  MathSciNet  Google Scholar 

  18. Hu, Q., Li, B., Zhang, Y.: Nonlinear proportional-derivative control incorporating closed-loop control allocation for spacecraft. J. Guid. Control Dyn. 37(3), 799–812 (2014). doi:10.2514/1.61815

    Article  Google Scholar 

  19. Hu, Q., Xiao, B., Wang, D., Poh, E.K.: Attitude control of spacecraft with actuator uncertainty. J. Guid. Control Dyn. 36(6), 1771–1776 (2013). doi:10.2514/1.58624

    Article  Google Scholar 

  20. Hua, C., Feng, G., Guan, X.: Robust controller design of a class of nonlinear time delay systems via backstepping method. Automatica 44(2), 567–573 (2008). doi:10.1016/j.automatica.2007.06.008

    Article  MATH  MathSciNet  Google Scholar 

  21. Jankovic, M.: Forwarding, backstepping, and finite spectrum assignment for time delay systems. Automatica 45(1), 2–9 (2009). doi:10.1016/j.automatica.2008.04.021

    Article  MATH  MathSciNet  Google Scholar 

  22. Jankovic, M.: Recursive predictor design for state and output feedback controllers for linear time delay systems. Automatica 46(3), 510–517 (2010). doi:10.1016/j.automatica.2010.01.021

    Article  MATH  MathSciNet  Google Scholar 

  23. Karafyllis, I.: Finite-time global stabilization by means of time-varying distributed delay feedback. SIAM J. Control Optim. 45(1), 320–342 (2006). doi:10.1137/040616383

    Article  MATH  MathSciNet  Google Scholar 

  24. Karafyllis, I.: Stabilization by means of approximate predictors for systems with delayed input. SIAM J. Control Optim. 49(3), 1100–1123 (2011). doi:10.1137/100781973

    Article  MATH  MathSciNet  Google Scholar 

  25. Krstic, M.: Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Trans. Autom. Control 55(2), 287–303 (2010). doi:10.1109/TAC.2009.2034923

    Article  MathSciNet  Google Scholar 

  26. Krstic, M., Bekiaris-Liberis, N.: Nonlinear stabilization in infinite dimension. Annu. Rev. Control 37(2), 220–231 (2013). doi:10.1016/j.arcontrol.2013.09.002

    Article  MathSciNet  Google Scholar 

  27. Krstic, M., Tsiotras, P.: Inverse optimal stabilization of a rigid spacecraft. IEEE Tran. Autom. Control 44(5), 1042–1049 (1999). doi:10.1109/9.763225

    Article  MATH  MathSciNet  Google Scholar 

  28. Lee, T.: Computational geometric mechanics and control of rigid bodies. Ph.D. thesis, University of Michigan (2008)

  29. Liang, Z., Liu, Q.: Design of stabilizing controllers of upper triangular nonlinear time-delay systems. Syst. Control Lett. 75, 1–7 (2015). doi:10.1016/j.sysconle.2014.10.011

    Article  MATH  MathSciNet  Google Scholar 

  30. Ma, Y., Jiang, B., Tao, G., Cheng, Y.: Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedback. J. Frankl. Inst. 351(1), 296–314 (2014). doi:10.1016/j.jfranklin.2013.08.028

    Article  MATH  MathSciNet  Google Scholar 

  31. Malisoff, M., Mazenc, F.: Constructions of Strict Lyapunov Functions. Springer, London (2009). doi:10.1007/978-1-84882-535-2

    Book  MATH  Google Scholar 

  32. Mazenc, F., Bliman, P.: Backstepping design for time-delay nonlinear systems. IEEE Trans. Autom. Control 51(1), 149–154 (2006). doi:10.1109/TAC.2005.861701

    Article  MathSciNet  Google Scholar 

  33. Mazenc, F., Malisoff, M., Lin, Z.: Further results on input-to-state stability for nonlinear systems with delayed feedbacks. Automatica 44(9), 2415–2421 (2008). doi:10.1016/j.automatica.2008.01.024

    Article  MATH  MathSciNet  Google Scholar 

  34. Mazenc, F., Niculescu, S.I.: Generating positive and stable solutions through delayed state feedback. Automatica 47(3), 525–533 (2011). doi:10.1016/j.automatica.2011.01.029

    Article  MATH  MathSciNet  Google Scholar 

  35. Mazenc, F., Niculescu, S.I., Bekaik, M.: Backstepping for nonlinear systems with delay in the input revisited. SIAM J. Control Optim. 49(6), 2263–2278 (2011). doi:10.1137/100819023

    Article  MATH  MathSciNet  Google Scholar 

  36. Nazari, M., Butcher, E.A., Schaub, H.: Spacecraft attitude stabilization using nonlinear delayed multiactuator control and inverse dynamics. J. Guid. Control Dyn. 36(5), 1440–1452 (2013). doi:10.2514/1.58249

    Article  Google Scholar 

  37. Pepe, P., Jiang, Z.P.: A Lyapunov–Krasovskii methodology for ISS and iISS of time-delay systems. Syst. Control Lett. 55(12), 1006–1014 (2006). doi:10.1016/j.sysconle.2006.06.013

    Article  MATH  MathSciNet  Google Scholar 

  38. Samiei, E., Nazari, M., Butcher, E., Schaub, H.: Delayed feedback control of rigid body attitude using neural networks and Lyapunov–Krasovskii functionals. In: AAS/AIAA Space flight Mechanics Meeting. Charleston, SC (2012)

  39. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd edn. AIAA Education Series, Reston, VA (2009). doi:10.2514/4.867231

  40. Sepulchre, R., Janković, M., Kokotović, P.V.: Constructive Nonlinear Control, chap. Construction of Lyapunov Functions. Springer, New York (1997)

    Google Scholar 

  41. Sidi, M.J.: Spacecraft Dynamics and Control: a Practical Engineering Approach, vol. 7. Cambridge University Press, New York (1997)

    Google Scholar 

  42. Slotine, J.J.E., Li, W.: Applied Nonlinear Control, chap. Krasovskii’s Method. Prentice-Hall, Englewood Cliffs, New Jersey (1991)

    Google Scholar 

  43. Sontag, E.D.: Input-to-state stability: Basic concepts and results. In: Paolo Nistri, G.S. (ed.) Nonlinear and Optimal Control Theory, vol. 1932, pp. 163–220. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  44. Teel, A.: Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans. Autom. Control 43(7), 960–964 (1998). doi:10.1109/9.701099

    Article  MATH  MathSciNet  Google Scholar 

  45. Tsiotras, P.: Stabilization and optimality results for the attitude control problem. J. Guid. Control Dyn. 19(4), 772–779 (1996). doi:10.2514/3.21698

    Article  MATH  Google Scholar 

  46. Xiao, B., Hu, Q., Singhose, W., Huo, X.: Reaction wheel fault compensation and disturbance rejection for spacecraft attitude tracking. J. Guid. Control Dyn. 36(6), 1565–1575 (2013). doi:10.2514/1.59839

    Article  Google Scholar 

  47. Xiao, B., Hu, Q., Zhang, Y., Huo, X.: Fault-tolerant tracking control of spacecraft with attitude-only measurement under actuator failures. J. Guid. Control Dyn. 37(3), 838–849 (2014). doi:10.2514/1.61369

    Article  Google Scholar 

  48. Zhang, F., Duan, G.R.: Robust adaptive integrated translation and rotation finite-time control of a rigid spacecraft with actuator misalignment and unknown mass property. Int. J. Syst. Sci. 45(5), 1007–1034 (2014). doi:10.1080/00207721.2012.743618

    Article  MATH  MathSciNet  Google Scholar 

  49. Zhang, R., Li, T., Guo, L.: \({H_\infty }\) control for flexible spacecraft with time-varying input delay. Math. Probl. Eng. 2013, 1–6 (2013). doi:10.1155/2013/839108

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Associated Editor and the anonymous reviewers for their insightful and constructive comments that greatly contributed to improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Baradarannia.

Appendices

Appendix 1: Some useful inequalities

In what follows, we recall some well-known inequalities.

Jensen’s inequality: For any positive scalar \(\gamma \) and a real-valued function f such that the considered integrations are well defined, we have

$$\begin{aligned} \left( \int _0^\gamma f(\eta )\, \mathrm {d}\eta \right) ^2 \le \gamma \int _0^\gamma f^2(\eta ) \, \mathrm {d}\eta . \end{aligned}$$
(26)

Cauchy–Schwarz inequality: Let \( x, y \in \mathfrak {R}\). The Cauchy–Schwarz inequality says that

$$\begin{aligned} \Vert x+y\Vert ^2 \le (\Vert x\Vert + \Vert y\Vert )^2. \end{aligned}$$
(27)

Young’s inequality: Let \(1 < p,q < \infty \) satisfy the constraint \(1/p+1/q = 1\), and \(x,y \in \mathfrak {R}_+\). Then

$$\begin{aligned} x y\le & {} \frac{1}{p} x^p + \frac{1}{q} y^q. \end{aligned}$$

An elementary case of Young’s inequality is

$$\begin{aligned} x y\le & {} \frac{1}{2\varepsilon ^2} x^2 + \frac{\varepsilon ^2}{2} y^2, \qquad \varepsilon \in \mathfrak {R}. \end{aligned}$$

From above inequalities, one can immediately follow that

$$\begin{aligned} \left( x+y\right) ^2&\le \frac{401}{400} x^2 + 401 y^2. \end{aligned}$$
(28)
$$\begin{aligned} \left( x+y\right) ^2&\le 2 x^2 + 2 y^2. \end{aligned}$$
(29)
$$\begin{aligned} \left( x+y\right) ^2&\ge \left( 1-\frac{1}{\varepsilon ^2}\right) x^2 +(1-\varepsilon ^2) y^2. \end{aligned}$$
(30)

Appendix 2: Extracting upper bound of \(\Vert \varXi \Vert \)

Let rewrite \(\varXi \) as

$$\begin{aligned} \varXi = \varXi _1 + \varXi _2 \end{aligned}$$
(31)

where

$$\begin{aligned} \varXi _1 =&-J^{-1} S_{\alpha -P \sigma } J \left( \alpha - P \sigma \right) \end{aligned}$$
(32)
$$\begin{aligned} \varXi _2 =&P B (\alpha - P \sigma ), \qquad \varXi _1, \varXi _2 \in \mathfrak {R}^3. \end{aligned}$$
(33)

\(\varXi _1\) can expand to

$$\begin{aligned} \varXi _1&= - \mathrm {diag}\left[ \frac{J_3-J_2}{J_1},\frac{J_1-J_3}{J_2},\frac{J_2-J_1}{J_3} \right] \sum _{j=1}^4 \varXi _{1_j} \end{aligned}$$
(34)

where

$$\begin{aligned} \varXi _{1_1}&= \mathrm {diag} \left[ \alpha _2, \alpha _3, \alpha _1\right] \left[ \alpha _3, \alpha _1, \alpha _2\right] ^T \\ \varXi _{1_2}&= -\mathrm {diag} \left[ P_2, P_3, P_1\right] \mathrm {diag}\left[ \sigma _2, \sigma _3, \sigma _1\right] \left[ \alpha _3, \alpha _1, \alpha _2\right] ^T \\ \varXi _{1_3}&= -\mathrm {diag} \left[ P_3, P_1, P_2\right] \mathrm {diag}\left[ \sigma _3, \sigma _1, \sigma _2\right] \left[ \alpha _2, \alpha _3, \alpha _1\right] ^T \\ \varXi _{1_4}&= \mathrm {diag} \left[ P_2, P_3, P_1\right] \mathrm {diag}\left[ P_3, P_1, P_2\right] \\&\quad \mathrm {diag}\left[ \sigma _2, \sigma _3, \sigma _1\right] \left[ \sigma _3, \sigma _1, \sigma _2\right] ^T. \end{aligned}$$

Property 2 implies \(\Vert \mathrm {diag}\left[ \frac{J_3-J_2}{J_1},\frac{J_1-J_3}{J_2},\frac{J_2-J_1}{J_3} \right] \Vert \le 1 \). On the other hand, Property 3 deduces \(\Vert \sigma \Vert \le 1\). Hence, considering these inequalities and successive application of the triangular inequality, from (34), we obtain

$$\begin{aligned} \Vert \varXi _1\Vert \le \left( \Vert \alpha \Vert _\infty + 2 \bar{P} \right) \Vert \alpha \Vert + \bar{P}^2 \Vert \sigma \Vert . \end{aligned}$$
(35)

Also \(\varXi _2\) satisfies

$$\begin{aligned} \Vert \varXi _2\Vert&\le \Vert P B \alpha \Vert +\Vert P\left( BP\sigma \right) \Vert \nonumber \\&\le \bar{P} \frac{1+\Vert \sigma \Vert ^2}{4}\left( \Vert \alpha \Vert +\bar{P}\Vert \sigma \Vert \right) \nonumber \\&\le \frac{1}{2}\bar{P} \left( \Vert \alpha \Vert +\bar{P}\Vert \sigma \Vert \right) \end{aligned}$$
(36)

where Eq. (8) in Property 1 is used to drive (36).

Finally, combining (35) and (36) yields (20).

Appendix 3: Proof of Theorem 2

Before proving Theorem 2, we introduce a function which plays a key role in the proof. Our approach lies on the application of an operator of new type that leads to develop a delay compensation control law. This algorithm may be seen as classical reduction technique [3] but as pointed in [34], there is a major difference between classical reduction approach and algorithms based on application of this operator. By this consideration, the function \(\mathcal {O}(\sigma ,\alpha ):\mathfrak {R}^3\times \mathfrak {R}^3 \rightarrow \mathfrak {R}^3\) is defined by [21, 22, 34, 35]

$$\begin{aligned} \mathcal {O} = \alpha (t) + \int _{t-\tau }^t e^{\varrho \left( t-\tau -\eta \right) } J^{-1}T(\eta ) \, \mathrm {d}\eta \end{aligned}$$
(37)

and using Leibniz’s rule, its time derivative is obtained as

$$\begin{aligned} \dot{\mathcal {O}}&=\dot{\alpha } + e^{-\varrho \tau } J^{-1}T(t)-J^{-1}T(t-\tau ) \nonumber \\&\quad + \varrho \int _{t-\tau }^t e^{\varrho \left( t-\eta -\tau \right) } J^{-1}T(\eta )\, \mathrm {d}\eta . \end{aligned}$$
(38)

By substituting dynamics Eq. (18) and the control law (21) in Eq. (38), and also by adding and subtracting \(\varrho \alpha \) to the referenced equation, we have

$$\begin{aligned} \dot{\mathcal {O}}&= \varXi + J^{-1} T(t-\tau ) + e^{-\varrho \tau } J^{-1}T(t)-J^{-1}T(t-\tau ) \nonumber \\&\quad + \varrho \int _{t-\tau }^t e^{\varrho \left( t-\eta -\tau \right) } J^{-1}T(\eta )\, \mathrm {d}\eta +\varrho \alpha -\varrho \alpha \nonumber \\&=\varrho \mathcal {O} - \left( 1-e^{\bar{\tau }-\tau }\right) \left[ \varrho \alpha - \varXi \right] . \end{aligned}$$
(39)

By the virtue of Krasovskii theorem (see [42, Theorem 3.7] or [16, Theorem 3.6]) and thanks to the negativity of \(\varrho \) which is guaranteed by conditions (22) and (23), one can find that \(\mathcal {O}\) is a solution of exponentially stable system with Lyapunov function \(\mathcal {O}^T\mathcal {O}\). Thus, the existence of \(\gamma _3\in \mathfrak {R}_+\) such that

$$\begin{aligned} \dot{\mathcal {O}}^T\mathcal {O} \le -\gamma _3 \Vert \mathcal {O}\Vert ^2 \end{aligned}$$
(40)

is guaranteed. This feature will be used in what follows.

Using Sepulchre–Janković–Kokotović approach [40] with the function \(\mathcal {O}\), the L–K functional is constructed as

$$\begin{aligned} v(\sigma ,\alpha ) = v_0+\sum _1^5v_i \end{aligned}$$
(41)

where

$$\begin{aligned}&v_1(\sigma ) = \frac{1}{2\bar{\tau }} \int _{t-\bar{\tau }}^t\int _\lambda ^t\sigma ^T(\eta )P\sigma (\eta )\, \mathrm {d}\eta \, \mathrm {d}\lambda \nonumber \\&v_2(\alpha ) = \gamma _4 \int _{t-\bar{\tau }}^t\int _\lambda ^t \Vert \alpha (\eta )\Vert ^2\, \mathrm {d}\eta \, \mathrm {d}\lambda \nonumber \\&v_3(\sigma ) = \gamma _5 \int _{t-\bar{\tau }}^t \sigma (\eta )^TP\sigma (\eta )\, \mathrm {d}\eta \nonumber \\&v_4(\alpha ) = \gamma _5 \int _{t-\bar{\tau }}^t \Vert \alpha (\eta )\Vert ^2\, \mathrm {d}\eta \nonumber \\&v_5(\sigma , \alpha ) = \frac{1+802\bar{\tau }\gamma _4}{2\gamma _3} \Vert \mathcal {O}\Vert ^2 \nonumber \end{aligned}$$

in which \(\gamma _4 = \left( 22.545 \bar{\tau }^3 \bar{P}^4/\underline{P}\right) ^{-1}\) and \(\gamma _5 \in \mathfrak {R}_+\) is a constant which will be defined further ahead.

The derivatives of \(v_i,\, i=0, 1, \ldots , 5\) are obtained as

$$\begin{aligned} \dot{v}_0= & {} -\sigma (t)^TP\sigma (t) + \sigma ^T(t) \alpha (t) \end{aligned}$$
(42)
$$\begin{aligned} \dot{v}_1= & {} \frac{1}{2} \sigma (t)^T P \sigma (t)- \frac{1}{2\bar{\tau }} \int _{t-\bar{\tau }}^t \sigma (\eta )^TP\sigma (\eta ) \, \mathrm {d}\eta \end{aligned}$$
(43)
$$\begin{aligned} \dot{v}_2= & {} \gamma _4\bar{\tau } \Vert \alpha \Vert ^2-\gamma _4 \int _{t-\bar{\tau }}^t \Vert \alpha (\eta )\Vert ^2\, \mathrm {d}\eta \end{aligned}$$
(44)
$$\begin{aligned} \dot{v}_3= & {} \gamma _5 \left[ \sigma (t)^TP\sigma (t) -\sigma (t-\bar{\tau })^T P\sigma (t-\bar{\tau }) \right] \end{aligned}$$
(45)
$$\begin{aligned} \dot{v}_4= & {} \gamma _5 \left[ \Vert \alpha (t)\Vert ^2 -\Vert \alpha (t-\bar{\tau })\Vert ^2 \right] \end{aligned}$$
(46)
$$\begin{aligned} \dot{v}_5= & {} \frac{1+802\bar{\tau }\gamma _4}{\gamma _3} \dot{\mathcal {O}}^T \mathcal {O}. \end{aligned}$$
(47)

To show negativity of v, we shall establish the inequalities obtain from Eqs. (42)–(44) and (47).

Since \(\Vert \sigma (t)\Vert ^2\le 1/\underline{P} \sigma (t)^TP\sigma (t)\) for all \(t>0\), we get

$$\begin{aligned} \dot{v}_0&\le -\sigma (t)^TP\sigma (t) + \Vert \sigma (t)\Vert \Vert \alpha (t)\Vert \nonumber \\&\le -\sigma (t)^TP\sigma (t) + \sqrt{\frac{1}{\underline{P}}\sigma (t)^TP\sigma (t)} \Vert \alpha \Vert . \end{aligned}$$
(48)

Definition of function \(\mathcal {O}\) allows us to have the following inequality

$$\begin{aligned} \Vert \alpha (t)\Vert&\le \int _{t-\tau }^t e^{\varrho \left( t-\tau -\eta \right) } \Vert J^{-1}T(\eta )\Vert \, \mathrm {d}\eta +\Vert \mathcal {O}\Vert \\&\le \sup _\tau \left[ \int _{t-\tau }^t e^{\varrho \left( t-\eta +\bar{\tau }-{\tau }\right) }\Vert \left[ \varXi (\eta ) - \varrho \alpha \right] \Vert \,\mathrm {d}\eta \right] \\&\quad + \Vert \mathcal {O}\Vert . \end{aligned}$$

This inequality together with the inequality (20) and the negativity of \(\varrho \) implies that

$$\begin{aligned} \Vert \alpha (t)\Vert&\le \int _{t-\bar{\tau }}^t e^{\varrho \bar{\tau }}\Vert \left[ \varXi (\eta ) - \varrho \alpha \right] \Vert \,\mathrm {d}\eta + \Vert \mathcal {O}\Vert \nonumber \\&\le \int _{t-\bar{\tau }}^t \left( \gamma _1 \Vert \sigma (\eta )\Vert + \gamma _6 \Vert \alpha (\eta )\Vert \right) \, \mathrm {d}\eta + \Vert \mathcal {O}\Vert \end{aligned}$$
(49)

where \(\gamma _6\) =\(\gamma _2-\varrho \).

Using Jensen’s inequality (26) in conjunction with Cauchy–Schwarz inequality (27), and Young’s inequalities which are specialized for our needs, namely (28) and (29), we conclude

$$\begin{aligned} \Vert \alpha (t)\Vert ^2&\le \left( \int _{t-\bar{\tau }}^t \left( \gamma _1 \Vert \sigma (\eta )\Vert + \gamma _6 \Vert \alpha (\eta )\Vert \right) \, \mathrm {d}\eta + \Vert \mathcal {O}\Vert \right) ^2 \nonumber \\&\le \frac{401}{400}\left( \int _{t-\bar{\tau }}^t \left( \gamma _1 \Vert \sigma (\eta )\Vert + \gamma _6 \Vert \alpha (\eta )\Vert \right) \, \mathrm {d}\eta \right) ^2 \nonumber \\&\quad + 401 \Vert \mathcal {O}\Vert ^2 \nonumber \\&\le \frac{401}{400}\bar{\tau }\int _{t-\bar{\tau }}^t \left( \gamma _1 \Vert \sigma (\eta )\Vert + \gamma _6 \Vert \alpha (\eta )\Vert \right) ^2 \, \mathrm {d}\eta \nonumber \\&\quad + 401 \Vert \mathcal {O}\Vert ^2 \nonumber \\&\le \frac{401}{200}\bar{\tau }\int _{t-\bar{\tau }}^t \left( \gamma _1^2 \Vert \sigma (\eta )\Vert ^2 + \gamma _6^2 \Vert \alpha (\eta )\Vert \right) \, \mathrm {d}\eta \nonumber \\&\quad + 401 \Vert \mathcal {O}\Vert ^2 \nonumber \\&\le \frac{401}{200}\bar{\tau }\int _{t-\bar{\tau }}^t \left( \frac{\gamma _1^2}{\underline{P}}\sigma ^T(\eta )P\sigma (\eta ) +\gamma _6^2\Vert \alpha (\eta )\Vert ^2 \right) \, \mathrm {d}\eta \nonumber \\&\quad + 401 \Vert \mathcal {O}\Vert ^2. \end{aligned}$$
(50)

Consequently, by combining (50) with (44), we deduce that the following inequality holds

$$\begin{aligned} \dot{v}_2= & {} \gamma _4 \left( -\bar{\tau } \Vert \alpha \Vert ^2- \int _{t-\bar{\tau }}^t \Vert \alpha (\eta )\Vert ^2\, \mathrm {d}\eta +2 \bar{\tau } \Vert \alpha \Vert ^2 \right) \nonumber \\\le & {} \gamma _4 \left( -\bar{\tau } \Vert \alpha \Vert ^2 + \left( 4.01\bar{\tau }^2\gamma _6^2 -1\right) \int _{t-\bar{\tau }}^t \Vert \alpha (\eta )\Vert ^2\, \mathrm {d}\eta \right. \nonumber \\&\left. + \,4.01 \bar{\tau }^2 \frac{\gamma _1^2}{\underline{P}} \int _{t-\bar{\tau }}^t \sigma ^TP\sigma \, \mathrm {d}\eta + 802 \bar{\tau } \Vert \mathcal {O}\Vert ^2\right) \!.\nonumber \\ \end{aligned}$$
(51)

The functional v is chosen such that its time derivative along the trajectories is negative definite. Hence, this implies that a value for the \(\Vert \alpha (t)\Vert _\infty \) occurs over the initial condition interval, i.e., \(\Vert \alpha (t)\Vert _\infty =\Vert \alpha (0)\Vert _\infty \). Bearing this point in mind, the condition (22) imposes that \(4.01\bar{\tau }^2\gamma _6^2 -1 \le -0.4\bar{\tau }^2\gamma _6^2\). Combining (51) and the previous inequality, we get

$$\begin{aligned} \dot{v}_2\le & {} \gamma _4 \Big ( -\bar{\tau } \Vert \alpha \Vert ^2 -0.4 \bar{\tau }^2\gamma _6^2 \int _{t-\bar{\tau }}^t \Vert \alpha (\eta )\Vert ^2\, \mathrm {d}\eta \nonumber \\&+\,4.01 \bar{\tau }^2 \frac{\gamma _1^2}{\underline{P}} \int _{t-\bar{\tau }}^t \sigma ^TP\sigma \, \mathrm {d}\eta +802\bar{\tau } \Vert \mathcal {O}\Vert ^2 \Big ).\nonumber \\ \end{aligned}$$
(52)

Next, we need to extract an inequality for \(\dot{v}_5\) which is useful for our purpose. This is immediately done by considering the inequality (40), so

$$\begin{aligned} \dot{v}_5 \le -\left( 1+802\bar{\tau }\gamma _4 \right) \Vert \mathcal {O}\Vert ^2. \end{aligned}$$
(53)

Consequently, combining the inequalities (43), (45), (46), (48), (52), and (53) together and with some standard algebraic manipulations, we conclude that, for all \(t\ge 0\)

$$\begin{aligned} \dot{v}\le & {} -\frac{1}{2} \sigma ^T P \sigma + \sqrt{\frac{1}{\underline{P}}\sigma ^TP\sigma } \Vert \alpha \Vert -\gamma _4 \bar{\tau } \Vert \alpha \Vert ^2 \\&\; -\, 0.4 \bar{\tau }^2\gamma _4 \gamma _6^2 \int _{t-\bar{\tau }}^t \Vert \alpha \Vert ^2\, \mathrm {d}\eta \\&\; -\, \left( \frac{1}{2\bar{\tau }}-4.01 \bar{\tau }^2 \gamma _4 \frac{\gamma _1^2}{\underline{P}}\right) \int _{t-\bar{\tau }}^t \sigma ^TP\sigma \, \mathrm {d}\eta -\Vert \mathcal {O}\Vert ^2 \\&\; +\, \dot{v}_3 + \dot{v}_4. \end{aligned}$$

The above inequality can be rewritten as

$$\begin{aligned} \dot{v}\le & {} - \left[ \begin{array}{cc} \sqrt{\sigma ^TP\sigma }&\Vert \alpha \Vert \end{array} \right] \mathcal {N} \left[ \begin{array}{cc} \sqrt{\sigma ^TP\sigma }&\Vert \alpha \Vert \end{array} \right] ^T \nonumber \\&\; -\, 0.4 \bar{\tau }^2\gamma _4 \gamma _6^2 \int _{t-\bar{\tau }}^t \Vert \alpha \Vert ^2\, \mathrm {d}\eta \nonumber \\&\; -\, \frac{50}{501\bar{\tau }} \int _{t-\bar{\tau }}^t \sigma ^TP\sigma \, \mathrm {d}\eta -\Vert \mathcal {O}\Vert ^2 \nonumber \\&\; + \,\dot{v}_3 + \dot{v}_4, \end{aligned}$$
(54)

where \(\mathcal {N} = \left[ \begin{array}{ll} \frac{1}{2} &{} -\frac{1}{2\sqrt{\underline{P}}} \\ -\frac{1}{2\sqrt{\underline{P}}} &{} \gamma _4 \bar{\tau } \end{array} \right] \).

It is clear that the first term of the right-hand side of the inequality (54) is negative definite, if \(\mathcal {N}\) is positive definite matrix, i.e., we have

$$\begin{aligned} \frac{1}{2}\bar{\tau }\gamma _4-\frac{1}{4\underline{P}}>0 \rightarrow \frac{\bar{P}^4}{\underline{P}^2} < \frac{1}{1.5^2 5.01 \bar{\tau }^2} \end{aligned}$$
(55)

which implies that the inequality in condition (24) must be satisfied. Furthermore, it is easy to prove that there exists a positive constat \(\gamma _5\) such that \(\lambda ({\mathcal {N}})> 2\gamma _5\) (for instance \(4\gamma _5 = 0.5 + \bar{\tau }\gamma _4 - \sqrt{0.25\left( 1+ \underline{P}\right) +\tau ^2\gamma _4^2-\tau \gamma _4}\)); so

$$\begin{aligned} -\left[ \begin{array}{cc} \sqrt{\sigma ^TP\sigma }&\Vert \alpha \Vert \end{array} \right] \mathcal {N}&\left[ \begin{array}{cc} \sqrt{\sigma ^TP\sigma }&\Vert \alpha \Vert \end{array} \right] ^T \le \\&- 2\gamma _5\left( \sigma ^TP\sigma + \Vert \alpha \Vert ^2\right) . \end{aligned}$$

Thus, by recalling the inequality (54), we conclude that for all \(t\ge 0\), the following inequality holds

$$\begin{aligned} \dot{v} \le&-\gamma _5\sigma ^T P \sigma - \gamma _5 \Vert \alpha \Vert ^2 - 0.4 \bar{\tau }^2\gamma _4 \gamma _6^2 \int _{t-\bar{\tau }}^t \Vert \alpha \Vert ^2\, \mathrm {d}\eta \nonumber \\&- \frac{50}{501\bar{\tau }} \int _{t-\bar{\tau }}^t \sigma ^TP\sigma \, \mathrm {d}\eta -\Vert \mathcal {O}\Vert ^2. \end{aligned}$$
(56)

Notice that, however, we prove the negativity of \(\dot{v}\) along the trajectories, but still we are not allowed to apply L–K theorem [31, Theorem2.6]. For utilizing this theorem and establishing the uniformly asymptotically stability of the closed-loop system, we also need to show that there exist \(\kappa _i \in \mathcal {K}_\infty ,\, i=1,2\) such that

$$\begin{aligned}&\kappa _1(\Vert \sigma ^T,\alpha ^T\Vert )\le v\left( \sigma ,\alpha \right) \nonumber \\&\qquad \qquad \le \kappa _2 \left( \sup _{-\bar{\tau }\le s \le 0} \Vert \sigma ^T(t+s),\alpha ^T(t+s)\Vert \right) . \end{aligned}$$
(57)

To this end, since

$$\begin{aligned} v_1&\le \frac{1}{2\bar{\tau }} \bar{\tau } \sup _{\lambda \in [t-\bar{\tau }, t]}\left[ \int _\lambda ^t\sigma ^TP\sigma \, \mathrm {d}\eta \right] = \frac{1}{2}\int _{t-\bar{\tau }}^t\sigma ^TP\sigma \, \mathrm {d}\eta \end{aligned}$$

and

$$\begin{aligned} v_2&\le \gamma _4 \bar{\tau } \sup _{\lambda \in [t-\bar{\tau }, t]}\left[ \int _\lambda ^t \Vert \alpha \Vert ^2\, \mathrm {d}\eta \right] =\gamma _4 \bar{\tau } \int _{t-\bar{\tau }}^t \Vert \alpha \Vert ^2\, \mathrm {d}\eta \end{aligned}$$

from the definition of v, the following inequality is concluded

$$\begin{aligned} v \le&v_0 + \left( \frac{1}{2} + \gamma _5 \right) \int _{t-\bar{\tau }}^t\sigma ^TP\sigma \, \mathrm {d}\eta \nonumber \\ \;\quad&+ \left( \bar{\tau }\gamma _4 + \gamma _5 \right) \int _{t-\bar{\tau }}^t \Vert \alpha (\eta )\Vert ^2\, \mathrm {d}\eta \nonumber \\&+ \frac{1+802\bar{\tau }\gamma _4}{2\gamma _3} \Vert \mathcal {O}\Vert ^2 \end{aligned}$$
(58)

which guarantees the existence of \(\kappa _2\in \mathcal {K}_\infty \) such that \(v \le \kappa _2\).

The only thing that remains to be shown is a existence of \(\kappa _1\) which satisfy (57).

The definition of the functional v implies that

$$\begin{aligned} v \ge v_0 + v_3 + v_4 +v_5. \end{aligned}$$

Considering above inequality, through lengthy but simple calculations and similar procedure which was done to obtain Eq. (50) with utilizing inequality (30), we obtain

$$\begin{aligned} v\ge & {} v_0 + v_3 + v_4 +\frac{1+802 \bar{\tau }\gamma _4}{\gamma _3}\left[ \left( 1 - \epsilon ^2\right) \Vert \alpha \Vert ^2 + \varUpsilon \right] \nonumber \\ \end{aligned}$$
(59)

where

$$\begin{aligned} \varUpsilon&= 2\tau \left( 1-1/\epsilon ^2\right) e^{2\varrho (\bar{\tau }-\tau )} \\&\,\left[ \left( 2\gamma _2^2 + \varrho ^2 \right) \int _{t-\tau }^t \Vert \alpha \Vert ^2 \, \mathrm {d}\eta + 2\gamma _1^2/\underline{P}\right. \\&\quad \left. \int _{t-\tau }^t \sigma ^T P\sigma \, \mathrm {d}\eta \right] \end{aligned}$$

and \(\epsilon \in (-1, 1)\).

we observe that the \(\varUpsilon \) is a negative functional which is not suitable for our purpose, but this problem is solved efficiently by proper selecting of \(\epsilon \) and considering \(v_3\) and \(v_4\) functionals (at this point, the reason of introducing two functionals \(v_3\) and \(v_4\) in v is clarified). So, it follows that

$$\begin{aligned} v \ge v_0 + \frac{1+802 \bar{\tau }\gamma _4}{\gamma _3} \left( 1 - \epsilon ^2 \right) \Vert \alpha \Vert ^2 \quad \forall t\ge 0.\qquad \end{aligned}$$
(60)

Since the right-hand side of (60) is a positive definite radially unbounded function, we are able to state that there exists \(\kappa _1\) such that \(\kappa _1 \le v\). Therefore, according to the L–K theorem, we prove that the origin of the attitude system with control law (21) is UGAS. This completes the proof.

Appendix 4: Proof of Theorem 3

To show that the resulting closed-loop system with the proposed control law is ISS with respect to the disturbance \(T_\mathrm{d}\), we just need to show that the functional (41) is an ISS-LKF for the considered system.

Recalling that what we have done in the proof of Theorem 2, from (56), we conclude that

$$\begin{aligned} \dot{v} \le&-\gamma _5 \sigma ^T P \sigma -\gamma _5 \Vert \alpha \Vert ^2 -\gamma _7 \int _{t-\bar{\tau }}^t \Vert \alpha \Vert ^2\, \mathrm {d}\eta \\ \,&- \frac{50}{501\bar{\tau }} \int _{t-\bar{\tau }}^t \sigma ^TP\sigma \, \mathrm {d}\eta -\Vert \mathcal {O}\Vert ^2 + \gamma _8 \mathcal {O}^T J^{-1} T_\mathrm{d}(t). \end{aligned}$$

where \(\gamma _7 = 0.4 \bar{\tau }^2\gamma _4 \gamma _6^2\) and \(\gamma _8 =\left( 1+802\bar{\tau }\gamma _4\right) /\gamma _3\).

By the inequality

$$\begin{aligned} \gamma _8 \mathcal {O}^T J^{-1} T_d(t) \le 1/2 \Vert \mathcal {O}\Vert ^2 + \gamma ^2_8/2 \Vert J^{-1}T_d\Vert ^2 \end{aligned}$$

it follows that for all \(t\ge 0\), we have \(\dot{v} \le - \varGamma (x,\alpha ) + \gamma ^2_8/2 \Vert J^{-1}T_d\Vert ^2\) where

$$\begin{aligned} \varGamma&= \gamma _5 \sigma ^T P \sigma + \gamma _5 \Vert \alpha \Vert ^2 + \gamma _7 \int _{t-\bar{\tau }}^t \Vert \alpha \Vert ^2\, \mathrm {d}\eta \\ \,&+ \frac{50}{501\bar{\tau }} \int _{t-\bar{\tau }}^t \sigma ^TP\sigma \, \mathrm {d}\eta +\frac{1}{2}\Vert \mathcal {O}\Vert ^2. \end{aligned}$$

The positive definiteness of \(\varGamma \) implies that there exists a class \(\mathcal {K}_\infty \) function \(\kappa _3\) such that \(\dot{v} \le -\kappa _3 + \gamma ^2_8/2 \Vert J^{-1} T_d\Vert ^2\). This inequality and the positive definiteness condition (57) imply that v is an ISS-LKF. Finally, from Definition 1, we deduce that the system is ISS with respect to \(T_d\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safa, A., Baradarannia, M., Kharrati, H. et al. Global attitude stabilization of rigid spacecraft with unknown input delay. Nonlinear Dyn 82, 1623–1640 (2015). https://doi.org/10.1007/s11071-015-2265-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2265-0

Keywords

Navigation