Skip to main content
Log in

The combined effects of the thalamic feed-forward inhibition and feed-back inhibition in controlling absence seizures

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Absence seizures usually occur in dysfunctional neural networks. Thalamic feed-forward inhibition and feed-back inhibition are the two most critical microcircuits, which can be detected in multiple brain regions such as the thalamus and the neocortex. To theoretically explore whether these two inhibition microcircuits have combined effects on absence seizures, we improve corticothalamic mean-field network model through introducing GABAB-mediated inhibitory interneurons in the cerebral cortex (Ctx). On the one hand, we certify that thalamic feed-forward inhibition, i.e., the neurons of the thalamic reticular nucleus (TRN), receive excitatory signals from Ctx and transmit GABAA and GABAB-mediated inhibitory signals to the thalamic relay nucleus (SRN), which plays critical roles in preventing absence seizures. On the other hand, we demonstrate that feed-back inhibition in thalamus, i.e., the neurons of SRN, send excitatory signals to TRN and receive GABAB and GABAA-mediated inhibitory signals from the TRN and also participates in the suppression of absence seizures. Finally, we mainly consider the combined effects of two microcircuits involved in the feed-forward inhibited CTX-TRN pathway and the feed-back inhibited SRN-TRN pathway on absence seizures. Our results show that the two microcircuits play combination roles in eliminating absence seizures. Importantly, feed-back inhibition of thalamus is stronger than feed-forward inhibition in suppressing absence seizures. These results highlight the important significance of two kinds of microcircuit motifs on absence seizures and might provide theoretical guidance for the treatment of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The MATLAB code and data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tolaymat, A., Nayak, A., Geyer, J.D., et al.: Diagnosis and management of childhood epilepsy. Curr. Probl. Pediatr. Adolesc. Health Care 45(1), 3–17 (2015)

    Article  Google Scholar 

  2. Wang, Z., Wang, Q.: Stimulation strategies for absence seizures: targeted therapy of the focus in coupled thalamocortical model. Nonlinear Dyn. 96, 1649–1663 (2019)

    Article  Google Scholar 

  3. Yang, C., Liu, Z., Wang, Q., et al.: Epilepsy as a dynamical disorder orchestrated by epileptogenic zone: a review. Nonlinear Dyn. 104, 1901–1916 (2021)

    Article  Google Scholar 

  4. Zuberi, S.M., Symonds, J.D.: Update on diagnosis and management of childhood epilepsies. J. de Pediatria 91(6), 67–77 (2015)

    Article  Google Scholar 

  5. Crunelli, V., Leresche, N.: Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3(5), 371–382 (2002)

    Article  Google Scholar 

  6. Depaulis, A., David, O., Charpier, S.: The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J. Neurosci. Methods 260, 159–174 (2016)

    Article  Google Scholar 

  7. Holt, A.B., Netoff, T.I.: Computational modeling of epilepsy for an experimental neurologist. Exp. Neurol. 244, 75–86 (2013)

    Article  Google Scholar 

  8. Meeren, H., Pijn, J., van Luijtelaar, G., et al.: Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J. Neurosci. 22, 1480–1495 (2002)

    Article  Google Scholar 

  9. Avanzini, G., Panzica, F., De Curtis, M.: The role of the thalamus in vigilance and epileptogenic mechanisms. Clin. Neurophysiol. 111(2), S19-26 (2000)

    Article  Google Scholar 

  10. Sysoeva, M., Lüttjohann, A., van Luijtelaar, G., et al.: Dynamics of directional coupling underlying spike-wave discharges. Neuroscience 314, 75–89 (2016)

    Article  Google Scholar 

  11. Lüttjohann, A., van Luijtelaar, G.: The dynamics of cortico-thalamocortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy. Neurobiol. Dis. 47(1), 49–60 (2012)

    Article  Google Scholar 

  12. Sysoeva, M., Vinogradova, L., Kuznetsova, G., et al.: Changes in corticocortical and corticohippocampal network during absence seizures in WAG/Rij rats revealed with time varying Granger causality. Epilepsy Behav. 64, 44–50 (2016)

    Article  Google Scholar 

  13. Chen, M., Guo, D., Xia, Y., et al.: Control of absence seizures by the thalamic feed-forward inhibition. Front. Comput. Neurosci. 11, 1–31 (2017)

    Google Scholar 

  14. Fan, D., Zhang, L., Wang, Q.: Transition dynamics and adaptive synchronization of time-delay interconnected corticothalamic systems via nonlinear control. Nonlinear Dyn. 94, 2807–2825 (2018)

    Article  Google Scholar 

  15. Medvedeva, T.M., Sysoeva, M.V., van Luijtelaar, G., et al.: Modeling spike-wave discharges by a complex network of neuronal oscillators. Neural Netw. 98, 271–282 (2018)

    Article  Google Scholar 

  16. Paz, J.T., Davidson, T.J., Frechette, E.S., et al.: Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16(1), 64–70 (2013)

    Article  Google Scholar 

  17. Lüttjohann, A., van Luijtelaar, G.: Thalamic stimulation in absence epilepsy. Epilepsy Res. 106(1–2), 136–145 (2013)

    Article  Google Scholar 

  18. Liu, S., Wang, Q.: Transition dynamics of generalized multiple epileptic seizures associated with thalamic reticular nucleus excitability: a computational study. Commun. Nonlinear Sci. Numer. Simul. 52, 203–213 (2017)

    Article  Google Scholar 

  19. Kros, L., Eelkman Rooda, O.H.J., De Zeeuw, C.I., et al.: Controlling cerebellar output to treat refractory epilepsy. Trends Neurosci. 38(12), 787–799 (2015)

    Article  Google Scholar 

  20. Sorokin, J.M., Davidson, T.J., Frechette, E., et al.: Bidirectional control of generalized epilepsy networks via rapid real-time switching of firing mode. Neuron 93(1), 194–210 (2017)

    Article  Google Scholar 

  21. Chen, M., Guo, D., Wang, T., et al.: Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput. Biol. 10(3), 1–17 (2014)

    Article  Google Scholar 

  22. Paz, J.T., Huguenard, J.R.: Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat. Neurosci. 18(3), 351 (2015)

    Article  Google Scholar 

  23. Mccafferty, C., David, F., Venzi, M., et al.: Cortical drive and thalamic feed-forward inhibition control thalamic output synchrony during absence seizures. Nat. Neurosci. 21, 744–756 (2018)

    Article  Google Scholar 

  24. Connors, B.W., Landisman, C.E., Reid, R.C.: Thalamus: organization and function (vol. 1), experimental and clinical aspects (vol. 2). Trends Neurosci. 21(12), 539–540 (1998)

    Article  Google Scholar 

  25. Kohmann, D., Lüttjohann, A., Seidenbecher, T., et al.: Short term depression of gap junctional coupling in reticular thalamic neurons of absence epileptic rats. J. Physiol. 594(19), 5695–5710 (2016)

    Article  Google Scholar 

  26. Wallace, R.H., Marini, C., Petrou, S., et al.: Mutant GABAA receptor 2-subunit in childhood absence epilepsy and febrile seizures. Nat. Genet. 28(1), 49–52 (2001)

    Google Scholar 

  27. Destexhe, A., Contreras, D., Steriade, M.: LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing 38–40, 555–563 (2001)

    Article  Google Scholar 

  28. Bortolato, M., Frau, R., Orrù, M., et al.: GABA(B) receptor activation exacerbates spontaneous spike-and-wave discharges in DBA/2J mice. Seizure 19(4), 226–231 (2010)

    Article  Google Scholar 

  29. Marescaux, C., Vergnes, M., Bernasconi, R.: GABAB receptor antagonists: potential new anti-absence drugs. J Neural Transm Suppl. 35, 179–188 (1992)

    Google Scholar 

  30. Robinson, P.A., Rennie, C.J., Rowe, D.L.: Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65(4), 1–9 (2002)

    Article  Google Scholar 

  31. Destexhe, A.: Spike-and-wave oscillations based on the properties of GABAB receptors. J. Neurosci. Off. J. Soc. Neurosci. 18(21), 9099–9111 (1998)

    Article  Google Scholar 

  32. Chen, M., Guo, D., Min, L., et al.: Critical roles of the direct GABAergic Pallido- cortical pathway in controlling absence seizures. PLoS Comput. Biol. 11(10), 1–23 (2015)

    Article  Google Scholar 

  33. Rodrigues, S., Barton, D., Szalai, R., et al.: Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. J. Comput. Neurosci. 27(3), 507–526 (2009)

    Article  MathSciNet  Google Scholar 

  34. Marten, F., Rodrigues, S., Benjamin, O., et al.: Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1891), 1145–1161 (2009)

    Article  MathSciNet  Google Scholar 

  35. Paz, J.T., Bryant, A.S., Peng, K., et al.: A new mode of corticothalamic transmission revealed in the Gria4 (-/-) model of absence epilepsy. Nat. Neurosci. 14(9), 1167–1173 (2011)

    Article  Google Scholar 

  36. Shao, Z., Burkhalter, A.: Different Balance of Excitation and Inhibition in Forward and Feedback Circuits of Rat Visual Cortex. J. Neurosci. 16(22), 7353–7365 (1996)

    Article  Google Scholar 

  37. Gluckman, B.J., Nguyen, H., Weinstein, S.L., et al.: Adaptive electric field control of epileptic seizures. J. Neurosci. 21(2), 590–600 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12002001) and North China University of Technology Research Fund Program for Key Discipline (No. 110052972027/014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Duan, L. The combined effects of the thalamic feed-forward inhibition and feed-back inhibition in controlling absence seizures. Nonlinear Dyn 108, 191–205 (2022). https://doi.org/10.1007/s11071-021-07178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07178-5

Keywords

Navigation