Skip to main content
Log in

The local wave phenomenon in the quintic nonlinear Schrödinger equation by numerical methods

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear Schrödinger hierarchy has a wide range of applications in modeling the propagation of light pulses in optical fibers. In this paper, we focus on the integrable nonlinear Schrödinger (NLS) equation with quintic terms, which play a prominent role when the pulse duration is very short. First, we investigate the spectral signatures of the spatial Lax pair with distinct analytical solutions and their periodized wavetrains by Fourier oscillatory method. Then, we numerically simulate the wave evolution of the quintic NLS equation from different initial conditions through the symmetrical split-step Fourier method. We find many localized high-peak structures whose profiles are very similar to the analytical solutions, and we analyze the formation of rouge waves (RWs) in different cases. These results can be helpful to understand the excitation of nonlinear waves in some nonlinear fields, such as the Heisenberg ferromagnetic spin system in condensed matter physics, ultrashort pulses in nonlinear optical fibers, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ruan, H.Y., Chen, Y.X.: The study of exact solutions to the nonlinear Schrödinger equations in optical fiber. J. Phys. Soc. Japan 72(6), 1350 (2007)

    Article  Google Scholar 

  2. Wang, Y.Y., Li, J.T., Dai, C.Q., et al.: Solitary waves and rogue waves in a plasma with nonthermal electrons featuring Tsallis distribution. Phys. Lett. A 377(34–36), 2097–2104 (2013)

    Article  MathSciNet  Google Scholar 

  3. Ma, W.X.: Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimensions. Front. Math. China 14(3), 619–629 (2019)

    Article  MathSciNet  Google Scholar 

  4. Zhang, L.J., Han, M.A., Khalique, C.M., et al.: A new type of solitary wave solution of the mKdV equation under singular perturbations. Int. J. Bifurcation Chaos 30(11), 2050162 (2020)

    Article  MathSciNet  Google Scholar 

  5. Khalique, C.M., Simbanefayi, I.: Conservation laws, classical symmetries and exact solutions of a (1+1)-dimensional fifth-order integrable equation. Int. J. Geomet. Methods Mod. Phys. 18(09), 2150137 (2021)

    Article  MathSciNet  Google Scholar 

  6. Lou, Y., Zhang, Y., Ye, R.S., et al.: Solitons and dynamics for the integrable nonlocal pair-transition-coupled nonlinear Schrödinger equation. Appl. Math. Comput. 409, 126417 (2021)

    MATH  Google Scholar 

  7. Tang, Y.N., He, C.H., Zhou, M.L.: Darboux transformation of a new generalized nonlinear Schrödinger equation: soliton solutions, breather solutions, and rogue wave solutions. Nonlinear Dyn. 92(4), 2023–2036 (2018)

    Article  Google Scholar 

  8. He, C.H., Tang, Y.N., Ma, W.X., et al.: Interaction phenomena between a lump and other multi-solitons for the (2+1)-dimensional BLMP and Ito equations. Nonlinear Dyn. 95(1), 29–42 (2019)

    Article  Google Scholar 

  9. Zhou, J.L., Tang, Y.N., Zhang, L.P.: Modulation instability and rogue wave spectrum for the generalized nonlinear Schrödinger equation. Physica Scripta 95(11), 115205 (2020)

    Article  Google Scholar 

  10. Tang, Y.N., Zhou, J.L.: Mixed interaction solutions for the coupled nonlinear Schrödinger equations. Mod. Phys. Lett. B 35(10), 2150004 (2021)

    Article  Google Scholar 

  11. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: On the nature of rogue waves. Phys. Lett. A 373(25), 2137–2145 (2009)

    Article  MathSciNet  Google Scholar 

  12. Solli, D.R., Ropers, C., Koonath, P., et al.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

    Article  Google Scholar 

  13. Kharif, C., Pelinovsky, E. Slunyaev, A.: Rogue Waves in the Ocean (2009)

  14. Cao, D.B., Pan, L.X., Sun, Y.B., et al.: Families of exact solutions for two-component Bose-Einstein condensates. Adv. Mater. Res. 152–153, 1309–1312 (2010)

    Article  Google Scholar 

  15. Yan, Z.Y.: Financial rogue waves. Commun. Theor. Phys. 11, 947–949 (2010)

    Article  Google Scholar 

  16. Onorato, M., Residori, S., Bortolozzo, U., et al.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528(2), 47–89 (2013)

    Article  MathSciNet  Google Scholar 

  17. Zakharov, V.E.: Turbulence in integrable systems. Stud. Appl. Math. 122(3), 219–234 (2009)

    Article  MathSciNet  Google Scholar 

  18. Agafontsev, D.S., Zakharov, V.E.: Integrable turbulence and formation of rogue waves. Nonlinearity 28(8), 2791–2821 (2015)

    Article  MathSciNet  Google Scholar 

  19. Walczak, P., Randoux, S., Suret, P.: Optical rogue waves in integrable turbulence. Phys. Rev. Lett. 114(14), 143903 (2015)

    Article  MathSciNet  Google Scholar 

  20. Soto-Crespo, J.M., Devine, N., Akhmediev, N.: Integrable turbulence and rogue waves: breathers or solitons? Phys. Rev. Lett. 116(10), 103901 (2016)

    Article  Google Scholar 

  21. Dudley, J.M., Dias, F., Erkintalo, M., et al.: Instabilities, breathers and rogue waves in optics. Nat. Photon. 8(10), 755–764 (2014)

    Article  Google Scholar 

  22. Randoux, S., Suret, P., El, G.: Inverse scattering transform analysis of rogue waves using local periodization procedure. Sci. Rep. 6(474), 29238 (2016)

    Article  Google Scholar 

  23. Akhmediev, N., Soto-Crespo, J.M., Devine, N.: Breather turbulence versus soliton turbulence: rogue waves, probability density functions, and spectral features. Phys. rev.e 94(2), 022212 (2016)

    Article  MathSciNet  Google Scholar 

  24. Onorato, M., Osborne, A.R., Serio, M.: Modulational instability in crossing sea states: a possible mechanism for the formation of freak Waves. Phys. Rev. Lett. 96(1), 014503 (2006)

    Article  Google Scholar 

  25. Biondini, G., Fagerstrom, E.: The integrable nature of modulational instability. SIAM J. Appl. Math. 75(1), 136–163 (2015)

    Article  MathSciNet  Google Scholar 

  26. Wang, L., Yan, Z.Y., Guo, B.L.: Numerical analysis of the Hirota equation: modulational instability, breathers, rogue waves, and interactions. Chaos 30(1), 013114 (2020)

    Article  MathSciNet  Google Scholar 

  27. Yang, Y., Yan, Z. Y., Malomed, B. A.: Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation. Chaos: an Interdisciplinary. J. Nonlinear 88(6), 193 (2015)

  28. Pan, W.: Conservation laws and solitons for a generalized inhomogeneous fifth-order nonlinear Schrödinger equation from the inhomogeneous Heisenberg ferromagnetic spin system. Eur. Phys. J. D 68(7), 1–8 (2014)

    Google Scholar 

  29. Zhao, C., Gao, Y.T., Lan, Z.Z., et al.: Bilinear forms and dark-soliton solutions for a fifth-order variable-coefficient nonlinear Schrödinger equation in an optical fiber. Mod. Phys. Lett. B Conden. Matter Phys. Statist. Phys. Appl. Phys. 30(24), 1650312 (2016)

    Google Scholar 

  30. Sun, W.R., Tian, B., Zhen, H.L., et al.: Breathers and rogue waves of the fifth-order nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain. Nonlinear Dyn. 81(1), 725–732 (2015)

  31. Feng, L.L., Tian, S.F., Zhang, T.T.: Solitary wave, breather wave and rogue wave solutions of an inhomogeneous fifth-order nonlinear Schrödinger equation from Heisenberg ferromagnetism. Rocky Mountain J. Math. 49(1), 29–45 (2019)

    Article  MathSciNet  Google Scholar 

  32. Yang, C., Liu, W., Zhou, Q., et al.: One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95(1), 369–380 (2019)

    Article  Google Scholar 

  33. Liu, S., Zhou, Q., Biswas, A., et al.: Interactions among solitons for a fifth-order variable coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 100(1), 2797–2805 (2020)

    Article  Google Scholar 

  34. Song, N., Xue, H., Zhao, X.: Nonlinear dynamics of rogue waves in a fifth-order nonlinear Schrödinger equation. IEEE Access. 8, 9610–9618 (2020)

    Article  Google Scholar 

  35. Chowdury, A., Kedziora, D.J., Ankiewicz, A., et al.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 90(3), 032922 (2014)

    Article  Google Scholar 

  36. Kedziora, D.J., Akhmediev, N., Chowdury, A., et al.: Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 91(2), 022919 (2015)

    Article  Google Scholar 

  37. Boffetta, G., Osborne, A.R.: Computation of the direct scattering transform for the nonlinear Schrödinger equation. J. Comput. Phys. 102(2), 252–264 (1992)

    Article  MathSciNet  Google Scholar 

  38. Yang, J. K.: Nonlinear waves in integrable and nonintegrable systems. Soc. Ind. Appl. Math. (2010)

  39. Boyd, J.P., Marilyn, T., Eliot, P.: Chebyshev and Fourier Spectral Methods. Dover Publications (2020)

  40. El, G.A., Khamis, E.G., Tovbis, A.: Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves. Nonlinearity 29(9), 2798–2836 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No. 11972291), Natural Science Basic Research Program of Shaanxi (No. 2020JM-115) and Aeronautical Science Foundation of China (No. 201941053004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaning Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Liang, Z. & Xie, W. The local wave phenomenon in the quintic nonlinear Schrödinger equation by numerical methods. Nonlinear Dyn 108, 1547–1559 (2022). https://doi.org/10.1007/s11071-021-07169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07169-6

Keywords

Navigation