Skip to main content
Log in

Interaction phenomena between a lump and other multi-solitons for the \({\mathbf {(2+1)}}\)-dimensional BLMP and Ito equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, “new” interaction solutions between a lump solution and other multi-soliton (kinky or stripe) solutions are studied through developing a “new” direct method based on the Hirota bilinear form for the \((2+1)\)-dimensional BLMP equation and the \((2+1)\)-dimensional Ito equation. Interaction solutions degenerate into lump (or kinky/stripe) solutions while the involved exponential function (or quadratic function) disappears. The interaction phenomena in the presented solutions show that a lump can be drowned or swallowed by other multi-solitary waves (kinky or stripe waves), and such interactions are very rare non-elastic collisions. What is more, we find that the positions of the interaction between a lump and three or four kinky waves are different while we choose different parameters, and the collisions may be at the bottom, middle, top or other positions. The dynamic characteristics of the constructed interaction solutions are illustrated by sequences of interesting figures plotted with the help of Maple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63(3), 205–206 (1977)

    Article  Google Scholar 

  2. Nakamura, A.: Explode-decay mode lump solitons of a two-dimensional nonlinear Schrödinger equation. Phys. Lett. A 88(2), 55–56 (1982)

    Article  MathSciNet  Google Scholar 

  3. Obukhov, Y.N., Vlachynsky, E.J., Esser, W., Tresguerres, R., Hehl, F.W.: An exact solution of the metric-affine gauge theory with dilation, shear, and spin charges. Phys. Lett. A 220(1–3), 1–9 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhu, X.M., Zhang, D.J., Chen, D.Y., Zhu, X.M., Chen, D.Y.: Lump solutions of Kadomtsev–Petviashvili I equation in non-uniform media. Theor. Phys. 55(1), 13–19 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Lu, Z., Chen, Y.: Construction of rogue wave and lump solutions for nonlinear evolution equations. Eur. Phys. J. B 88(7), 1–5 (2015)

    Article  MathSciNet  Google Scholar 

  6. Imai, K., Nozaki, K.: Lump solutions of the Ishimori-II equation. Prog. Theor. Phys. 96(3), 521–526 (1996)

    Article  MathSciNet  Google Scholar 

  7. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, X.H., He, J.H.: Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method. Comput. Math. Appl. 54(7), 966–986 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, L., Huo, X.: On the exp-function method for constructing travelling wave solutions of nonlinear equations. Nonlinear Mod. Math. Phys. 1212, 280–285 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Ma, W.X., Huang, T.W., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82(6), 5468–5478 (2010)

    Article  Google Scholar 

  11. Tang, Y., Tao, S., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput. Math. Appl. 72(9), 2334–2342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tang, Y., Tao, S., Zhou, M., Guan, Q.: Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations. Nonlinear Dyn. 89(2), 1–14 (2017)

    MathSciNet  Google Scholar 

  13. Huang, L., Chen, Y.: Lump solutions and interaction phenomenon for \((2+1)\)-dimensional Sawada–Kotera equation. Theor. Phys. 67(5), 473–478 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Tan, W., Dai, Z., Xie, J., Hu, L.: Emergence and interaction of the lump-type solution with the \((3+1)\)-d Jimbo–Miwa equation. Zeitschrift Fr Naturforschung A 73(1), 43–49 (2017)

    Google Scholar 

  15. Wang, Y., Chen, M.D., Li, X., Li, B.: Some interaction solutions of a reduced generalised \((3+1)\)-dimensional shallow water wave equation for lump solutions and a pair of resonance solitons. Zeitschrift Fr Naturforschung A 72(5), 419–424 (2017)

    Google Scholar 

  16. Kofane, T.C., Fokou, M., Mohamadou, A., Yomba, E.: Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. Eur. Phys. J. Plus 132(11), 465 (2017)

    Article  Google Scholar 

  17. Ahmed, I.: Interaction solutions for lump-line solitons and lump-kink waves of the dimensionally reduced generalised KP equation. Zeitschrift Fr Naturforschung A 72(10), 955–961 (2017)

    Google Scholar 

  18. Nistazakis, H.E., Frantzeskakis, D.J., Malomed, B.A.: Collisions between spatiotemporal solitons of different dimensionality in a planar waveguide. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(2) (2001). https://doi.org/10.1103/PhysRevE.64.026604

  19. Lu, Z., Tian, E.M., Grimshaw, R.: Interaction of two lump solitons described by the Kadomtsev–Petviashvili I equation. Wave Motion 40(2), 123–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fokas, A.S., Pelinovsky, D.E., Sulem, C.: Interaction of lumps with a line soliton for the dsii equation. Phys. D Nonlinear Phenom. 152–153(3), 189–198 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C., Dai, Z., Liu, C.: Interaction between kink solitary wave and rogue wave for \((2+1)\)-dimensional Burgers equation. Mediterr. J. Math. 13(3), 1087–1098 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Tan, W., Dai, Z.: Dynamics of kinky wave for \((3+1)\)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Nonlinear Dyn. 85(2), 817–823 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Zheltukhin, A.N., Flegel, A.V., Frolov, M.V., Manakov, N.L., Starace, A.F.: Rescattering effects in laser-assisted electron–atom bremsstrahlung. J. Phys. B At. Mol. Opt. Phys. 48(7), 75,202–75,216(15) (2015)

    Article  Google Scholar 

  24. Conn, R.W., Kesner, J.: Plasma modeling and first wall interaction phenomena in tokamaks. J. Nucl. Mater. 63(1), 1–14 (1976)

    Article  Google Scholar 

  25. Adelberger, E.G.: Weak interaction experiments at low energies results from atomic and nuclear physics. AIP Conf. Proc. 81, 259–279 (1982)

    Article  Google Scholar 

  26. Fabris, G., Hantman, R.G.: Interaction of fluid dynamics phenomena and generator efficiency in two-phase liquid-metal gas magnetohydrodynamic power generators. Energy Convers. Manag. 21(1), 49–60 (1981)

    Article  Google Scholar 

  27. Garc-Alvarado, M.G., Flores-Espinoza, R., OmelYanov, G.A.: Interaction of shock waves in gas dynamics: uniform in time asymptotics. Int. J. Math. Math. Sci. 2005(19), 3111–3126 (2014)

  28. Slowman, A.B., Evans, M.R., Blythe, R.A.: Exact solution of two interacting run-and-tumble random walkers with finite tumble duration. J. Phys. A Math. Theor. 50(37) (2017). https://doi.org/10.1088/1751-8121/aa80af

  29. Kaatze, U.: Electromagnetic Wave Interactions with Water and Aqueous Solutions. Springer, Berlin (2005)

    Book  Google Scholar 

  30. Song, L., Pu, L., Dai, Z.: Spatio-temporal deformation of kink-breather to the \((2+1)\)-dimensional potential Boiti–Leon–Manna–Pempinelli equation. Theor. Phys. 67(5), 493–497 (2017)

  31. Yang, J.Y., Ma, W.X., Qin, Z.Y.: Lump and lump-soliton solutions to the \((2+1)\)-dimensional Ito equation. Anal. Math. Phys. 8, 427–436 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (1980)

    Book  Google Scholar 

  33. Gilson, C.R., Nimmo, J., Willox, R.: A \((2+1)\)-dimensional generalization of the AKNS shallow water wave equation. Phys. Lett. A 180(4–5), 337–345 (1993)

    MathSciNet  Google Scholar 

  34. Li, Y., Li, D.: New exact solutions for the \((2+1)\)-dimensional Boiti–Leon–Manna–Pempinelli equation. Appl. Math. Sci. 30(1), 579–587 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Tang, Y., Zai, W.: New periodic-wave solutions for \((2+1)\)-and \((3+1)\)-dimensional Boiti–Leon–Manna–Pempinelli equations. Nonlinear Dyn. 81(1–2), 249–255 (2015)

    MathSciNet  Google Scholar 

  36. Ito, M.: An extension of nonlinear evolution equations of the K-dv (mK-dv) type to higher orders. J. Phys. Soc. Jpn. 49(2), 771–778 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wazwaz, A.M.: Multiple-soliton solutions for the generalized \((1+1)\)-dimensional and the generalized \((2+1)\)-dimensional Ito equations. Appl. Math. Comput. 202(2), 840–849 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the editor and reviewers for their constructive comments and suggestions. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. This research is supported by the Natural Science Basic Research Program of Shaanxi (Grant No. 2017JM1024) and sponsored by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Grant No. ZZ2018174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaning Tang.

Appendix

Appendix

See Figs. 9 and 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Tang, Y., Ma, W. et al. Interaction phenomena between a lump and other multi-solitons for the \({\mathbf {(2+1)}}\)-dimensional BLMP and Ito equations. Nonlinear Dyn 95, 29–42 (2019). https://doi.org/10.1007/s11071-018-4548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4548-8

Keywords

Navigation