Skip to main content
Log in

Complex dynamics in an eco-epidemiological model with the cost of anti-predator behaviors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the complex dynamics of a predator–prey model with disease in the prey, which is characterized by the reduction of prey growth rate due to the anti-predator behavior. The value of this study lies in two aspects: Mathematically, it provides the existence and the stability of the equilibria and gives the existence of Hopf bifurcation. And epidemiologically, we find that the influence of the fear factor is complex: (i) The level of the population density decreases with the increasing of the fear factor; (ii) the cost of fear can destabilize the stability and benefit the emergency of the periodic behavior; and (iii) the high level of fear can induce the extinction of the predator. These results may enrich the dynamics of the eco-epidemiological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bairagi, N., Adak, D.: Complex dynamics of a predatorcpreycparasite system: an interplay among infection rate, predator’s reproductive gain and preference. Ecol. Complex. 22, 1–12 (2015)

    Article  Google Scholar 

  2. Bate, A.M., Hilker, F.M.: Complex dynamics in an eco-epidemiological model. Bull. Math. Biol. 75, 2059–2078 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bulai, I.M., Hilker, F.M.: Eco-epidemiological interactions with predator interference and infection. Theor. Popul. Biol. 130, 191–202 (2019)

    Article  MATH  Google Scholar 

  4. Buonomo, B., d’Onofrio, A., Lacitignola, D.: Global stability of an sir epidemic model with information dependent vaccination. Math. Biosci. 216(1), 9–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, Y., Gui, Z., Zhang, X., Shi, H., Wang, W.M.: Bifurcations and pattern formation in a predator-prey model. Inter. J. Bifurc. Chaos 28, 1850140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, Y., Li, J., Kang, Y., Wang, K., Wang, W.: The fluctuation impact of human mobility on the influenza transmission. J. Franklin Inst. 357, 8899–8924 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Creel, S., Christianson, D.: Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008)

    Article  Google Scholar 

  8. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4), 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenhalgh, D., Haque, M.: A predator-prey model with disease in the prey species only. Math. Meth. Appl. Sci. 30(8), 911–929 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hadeler, K.P., Freedman, H.I.: Predator-prey populations with parasitic infection. J. Math. Biol. 27(6), 609–631 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haque, M., Jin, Z., Venturino, E.: An ecoepidemiological predator-prey model with standard disease incidence. Math. Meth. Appl. Sci. 32(7), 875–898 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hethcote, H.W., Wang, W., Han, L., Ma, Z.: A predator-prey model with infected prey. Theor. Popu. Biol. 66(3), 259–268 (2004)

    Article  Google Scholar 

  13. Hilker, F.M., Schmitz, K.: Disease-induced stabilization of predator-prey oscillations. J. Theor. Biol. 255, 299–306 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaiser, J.: Salton sea: Battle over a dying sea. Science 284, 28–30 (1999)

    Article  Google Scholar 

  15. Ko, W., Ryu, K.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Eq. 231(2), 534–550 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krishchenko, A.P., Starkov, K.E.: Convergence dynamics in one eco-epidemiological model: Self-healing and some related results. Commun. Nonlinear Sci. 85, 105223 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, A., Dubey, B.: Modeling the effect of fear in a prey-predator system with prey refuge and gestation delay. Inter. J. Bifur. Chaos 29(14), 1950195 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lafferty, K.D., Morris, A.K.: Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996)

    Article  Google Scholar 

  20. Lima, L.S.: Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48(1), 25–34 (1998)

    Article  Google Scholar 

  21. Malchow, H., Petrovskii, S., Venturino, E.: Spatiotemporal patterns in ecology and epidemiology-theory, models, and simulation. Chapman & Hall/CRC, Boca Raton (2008)

    MATH  Google Scholar 

  22. Murray, J.D.: Mathematical biology. Springer-Verlag, New York (1993)

    Book  MATH  Google Scholar 

  23. Peterson, R.O., Page, R.E.: Wolf density as a predictor of predation rate. Swed. Wild. Res. 1, 771–773 (1987)

    Google Scholar 

  24. Qiao, T., Cai, Y., Fu, S., Wang, W.M.: Stability and hopf bifurcation in a predator-prey model with the cost of anti-predator behaviors. Inter. J. Bifurc. Chaos 29, 1950185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sasmal, S.: Population dynamics with multiple Allee effects induced by fear factors induced by fear factors-a mathematical study on prey-predator. Appl. Math. Model. 64, 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shaikh, A.A., Das, H., Ali, N.: Study of lg-holling type iii predator-prey model with disease in predator. J. Appl. Math. Comput. 58(1–2), 235–255 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sharma, S., Samanta, G.P.: A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge. Chaos. Solit. Fract. 70, 69–84 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sheriff, M.J., Krebs, C.J., Boonstra, R.: The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J. Anim. Ecol. 78(6), 1249–1258 (2009)

    Article  Google Scholar 

  29. Sieber, M., Malchow, H., Hilker, F.M.: Disease-induced modification of prey competition in eco-epidemiological models. Ecol. Complex. 8, 74–82 (2014)

    Article  Google Scholar 

  30. Upadhyay, R., Mishra, S.: Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Math. Biosci. Eng. 16(1), 338–372 (2018)

    Article  MathSciNet  Google Scholar 

  31. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Venturino, E., Volpert, V.: Ecoepidemiology: a more comprehensive view of population interactions. Math. Model. Nat. Phenom. 11, 49–90 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, J., Cai, Y., Fu, S., Wang, W.M.: The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge. Chaos 29(8), 083109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, X., Tan, Y., Cai, Y., Wang, W.M.: Impact of the fear effect on the stability and bifurcation of a leslie-gower predator-prey model. Inter. J. Bifurc. Chaos 30(14), 2050210 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, X., Zou, X.: Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1325–1359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wirsing, A.J., Ripple, W.J.: A comparison of shark and wolf research reveals similar behavioral responses by prey. Front. Ecol. Environ. 9(6), 335–341 (2011)

    Article  Google Scholar 

  38. Xiao, Y., Chen, L.: Modeling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171(1), 59–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiao, Y., Chen, L.: A ratio-dependent predator-prey model with disease in the prey. Appl. Math. Comp. 131(2–3), 397–414 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zanette, L.Y., White, A.F., Allen, M.C., Michael, C.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)

    Article  Google Scholar 

  41. Zhang, H., Cai, Y., Fu, S., Wang, W.M.: Impact of the fear effect in a prey-predator model incorporating a prey refuge. Appl. Math. Comp. 356, 328–337 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for very helpful suggestions and comments which led to improvements of our original manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 12171192, 12071173, 61672013 and 61772017), the Natural Science Basic Research Program of Shaanxi Province, China (2021JZ-21), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB110025) and Huaian Key Laboratory for Infectious Diseases Control and Prevention (HAP201704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruoxia Yao or Weiming Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The sign of \(\xi (\mathscr {R}_0)\)

Proof

Recall

$$\begin{aligned} \xi (\mathscr {R}_0):=b\delta \mu \mathscr {R}_{0}^2-r(r cp-b\mu )\mathscr {R}_{0}+r^2cp, \end{aligned}$$

so we can discuss the sign of \(\xi (\mathscr {R}_0)\) in the following two cases.

Case 1 \(rcp\le b\mu \). In this case, \(\xi (\mathscr {R}_0)>0.\)

Case 2 \(rcp>b\mu \).

Set

$$\begin{aligned} \varDelta (b):= & {} (rcp-b\mu )^2-4cpb\delta \mu \\= & {} \mu ^2b^2-2cp\mu (r+2\delta )b+r^2c^2p^2. \end{aligned}$$

Note that \((-2cp\mu (r+2\delta ))^2-4\mu ^2r^2c^2p^2=16c^2\delta \mu ^2p^2(r+\delta )>0 \), then \(\varDelta (b)\) has two positive roots \(b_-\) and \(b_+\), which are defined as in (7).

Case 2-1 If \(b_-<b<b_+\) holds, we have \(\varDelta (b)<0,\) which implies that \(\xi (\mathscr {R}_0)>0.\)

Case 2-2 If \(b=b_\pm \) holds, we have \(\varDelta (b)=0.\) Thus, when \(\mathscr {R}_0=\dfrac{2rcp}{rcp-b\mu }\), we have \(\xi (\mathscr {R}_0)=0\); when \(\mathscr {R}_0\ne \dfrac{2rcp}{rcp-b\mu }\), we have \(\xi (\mathscr {R}_0)>0\).

Case 2-3 If \(0<b<b_-\) or \(b>b_+\) holds, we have \(\varDelta (b)>0.\)

Then, one can see that \(\xi (\mathscr {R}_0)\) has two positive roots \(\mathscr {R}_0^-\) and \(\mathscr {R}_0^+\), which are defined as in (8). In fact,

$$\begin{aligned} 1<\dfrac{2rcp}{rcp-b\mu +\sqrt{(rcp-b\mu )^2-4cpb\delta \mu }}=\mathscr {R}_0^-. \end{aligned}$$

Hence, if \(\mathscr {R}_0=\mathscr {R}_0^\pm \) holds, we have \(\xi (\mathscr {R}_0)=0;\) if \(1<\mathscr {R}_0^-<\mathscr {R}_0<\mathscr {R}_0^+\) holds, we have \(\xi (\mathscr {R}_0)<0;\) and if \(1<\mathscr {R}_0<\mathscr {R}_0^-\) or \( \mathscr {R}_0>\mathscr {R}_0^+\) holds, we have \(\xi (\mathscr {R}_0)>0.\)

Therefore, we can determine the sign of \(\xi (\mathscr {R}_0)\) in three cases as follows:

(1) when \(rcp>b\mu \), if \(0<b<b_-\) or \(b>b_+\), and \(1<\mathscr {R}_0^-<\mathscr {R}_0<\mathscr {R}_0^+\) hold, we have \(\xi (\mathscr {R}_0)<0;\)

(2) when \(rcp>b\mu \), if \(0<b\le b_-\) or \(b\ge b_+\), and \(\mathscr {R}_0=\mathscr {R}_0^\pm \), we have \(\xi (\mathscr {R}_0)=0.\)

(3) if one of the following inequalities holds:

   (3-1) \(rcp\le b\mu \);

   (3-2) \(rcp> b\mu \),

      (i) \(b_-<b<b_+\);

      (ii) \(b=b_\pm \) and \(\mathscr {R}_0\ne \dfrac{2rcp}{rcp-b\mu }\);

      (iii) \(0<b<b_-\) or \(b>b_+\), and \(1<\mathscr {R}_0<\mathscr {R}_0^-\) or \( \mathscr {R}_0>\mathscr {R}_0^+\),

we have \(\xi (\mathscr {R}_0)>0.\) \(\square \)

Appendix B: The Proof of Theorem 3

Proof

The Jacobin matrix of model (3) around \(E_{2}=\left( \frac{r}{b\mathscr {R}_0}, \frac{r^2(\mathscr {R}_0-1)}{b\mathscr {R}_0(\delta \mathscr {R}_0+r)}, 0\right) \) is given as

$$\begin{aligned} J_2=\left( \begin{array}{ccc} -\frac{r}{\mathscr {R}_0}&{} -\frac{r}{\mathscr {R}_0}-\delta &{} -\frac{akr}{b\mathscr {R}_0}\\ \frac{\delta r(\mathscr {R}_0-1)}{\delta \mathscr {R}_0+r} &{} 0 &{}-\frac{pr^2(\mathscr {R}_0-1)}{b\mathscr {R}_0(\delta \mathscr {R}_0+r)}\\ 0 &{} 0&{} -\frac{\xi (\mathscr {R}_0)}{b\mathscr {R}_0(\delta \mathscr {R}_0+r)} \end{array} \right) . \end{aligned}$$

Hence, the characteristic equation of \(J_2\) is given as

$$\begin{aligned}&\Bigl (\lambda ^2\mathscr {R}_0+r\lambda +r\delta (\mathscr {R}_0-1)\Bigr ) (-b\mathscr {R}_0(\delta \mathscr {R}_0+r)\lambda \\&\quad -b\delta \mu \mathscr {R}_{{0}}^2 +r(rcp-b\mu )\mathscr {R}_{{0}}-r^2cp)=0. \end{aligned}$$

Set

$$\begin{aligned} \phi (\lambda ):= & {} -b\mathscr {R}_0(\delta \mathscr {R}_0+r) \lambda -b\delta \mu \mathscr {R}_{{0}}^2\\&\quad +r(rcp-b\mu )\mathscr {R}_{{0}}-r^2cp\\&=-b\mathscr {R}_0(\delta \mathscr {R}_0+r)\lambda -\xi (\mathscr {R}_0), \end{aligned}$$

then \(\phi (\lambda )\) has a unique root \(-\frac{\xi (\mathscr {R}_0)}{b\mathscr {R}_0(\delta \mathscr {R}_0+r)}.\)

Case 1 When \(\xi (\mathscr {R}_0)>0\), \(E_2\) is stable;

Case 2 When \(\xi (\mathscr {R}_0)<0\), \(E_2\) is unstable;

Case 3 When \(\xi (\mathscr {R}_0)=0\), the root of \(\phi (\lambda )\) is zero, which implies that \(E_2\) is a singular point with higher order. In this case, we have

$$\begin{aligned} \begin{array}{ll} cpv_2-\mu &{}=\dfrac{cpr^2(\mathscr {R}_0-1)}{b\mathscr {R}_0(\delta \mathscr {R}_0+r)}-\mu \\ &{}=\dfrac{b\delta \mu \mathscr {R}_{0}^2-r(r cp-b\mu )\mathscr {R}_{0}+r^2cp}{b\mathscr {R}_0(\delta \mathscr {R}_0+r)}\\ &{}=\dfrac{\xi (\mathscr {R}_0)}{b\mathscr {R}_0(\delta \mathscr {R}_0+r)}\\ &{}=0, \end{array} \end{aligned}$$

which implies that

$$\begin{aligned} v_2=\dfrac{r^2(\mathscr {R}_0-1)}{b\mathscr {R}_0(\delta \mathscr {R}_0+r)}=\dfrac{\mu }{cp}. \end{aligned}$$

Let \(u=\bar{u}-\dfrac{r}{b\mathscr {R}_0}\), \(v=\bar{v}-\dfrac{\mu }{cp}\) and \(w=\bar{w}\), then the model (3) becomes

$$\begin{aligned} \left\{ \begin{array}{ll} \dfrac{\mathrm {d}u}{\mathrm {d}t}&{}=-\dfrac{(bu\mathscr {R}_0+r) (b\delta \mathscr {R}_0v+dkrw+kr^2w+bru+brv)}{rb\mathscr {R}_0},\\ \dfrac{\mathrm {d}v}{\mathrm {d}t}&{}=\dfrac{(cpv+\mu )(b\delta \mathscr {R}_0u-prw)}{cpr},\\ \dfrac{\mathrm {d}w}{\mathrm {d}t}&{}=cpvw, \end{array}\right. \end{aligned}$$
(24)

where we substitute uvw for \(\bar{u}, \bar{v}, \bar{w}\). Hence, the planar equilibrium \(E_2\) moves to (0, 0, 0). The Jacobian matrix at (0, 0, 0) of (24) is

$$\begin{aligned} J_2=\left( \begin{array}{ccc} -\frac{r}{\mathscr {R}_0} &{} -\frac{b\delta \mathscr {R}_0+br}{b\mathscr {R}_0} &{} -\frac{dkr+kr^2}{b\mathscr {R}_0}\\ \frac{\mu \mathscr {R}_0b\delta }{cpr} &{} 0 &{}-\frac{\mu }{c}\\ 0 &{} 0 &{} 0 \end{array}\right) . \end{aligned}$$
(25)

Thus, the center manifold is a curve tangent to the \(w-\)axis. In order to obtain the approximative expression of the center manifold, we set

$$\begin{aligned} \begin{array}{ll} u=\bar{n}_1w+\bar{n}_2w^2+O(w^2),\\ v=\tilde{n}_1w+\tilde{n}_2w^2+O(w^2). \end{array} \end{aligned}$$
(26)

Then, we have

$$\begin{aligned} \begin{array}{ll} \dfrac{\mathrm {d}u}{\mathrm {d}t}=\bar{n}_1\dfrac{\mathrm {d}w}{\mathrm {d}t}+2\bar{n}_2w\dfrac{\mathrm {d}w}{\mathrm {d}t}+O(w),\\ \dfrac{\mathrm {d}v}{\mathrm {d}t}=\tilde{n}_1\dfrac{\mathrm {d}w}{\mathrm {d}t}+2\tilde{n}_2w\dfrac{\mathrm {d}w}{\mathrm {d}t}+O(w) \end{array} \end{aligned}$$
(27)

Substituting (24) and (26) into (27), we can obtain

$$\begin{aligned}&-r(b\delta \mathscr {R}_0\tilde{n}_1+br(\bar{n}_1+\tilde{n}_1)+kr(d+r))w\nonumber \\&\quad -b(b\delta \mathscr {R}_0^2\bar{n}_1\tilde{n}_1+cpr\mathscr {R}_0 \bar{n}_1\tilde{n}_1\nonumber \\&\quad +br\mathscr {R}_0\bar{n}_1^2\nonumber \\&\quad +br\mathscr {R}_0\bar{n}_1\tilde{n}_1+dkr\mathscr {R}_0\bar{n}_1\nonumber \\&\quad +kr^2\mathscr {R}_0\bar{n}_1+\delta r\mathscr {R}_0\tilde{n}_2\nonumber \\&\quad +r^2\bar{n}_2+r^2\tilde{n}_2)w^2+O(w^2)=0,\nonumber \\&\qquad \qquad (b\delta \mu \mathscr {R}_0\bar{n}_1-\mu pr)w\nonumber \\&\quad +(bc\delta p\mathscr {R}_0\bar{n}_1 \tilde{n}_1-c^2p^2r\tilde{n}_1^2\nonumber \\&\quad +b\delta \mu \mathscr {R}_0\bar{n}_2-cp^2r\tilde{n}_1)w^2+O(w^2)=0. \end{aligned}$$
(28)

Comparing the coefficients of w and \(w^2\) in (28), we find that

$$\begin{aligned} \bar{n}_1= & {} \dfrac{rp}{\mathscr {R}_0b\delta },\;\;\\ \bar{n}_2= & {} \dfrac{c^2p^2r^3(d\delta k\mathscr {R}_0+\delta kr\mathscr {R}_0+pr)^2}{\mathscr {R}_0^3b^3\delta ^3(\delta \mathscr {R}_0+r)^2\mu },\;\;\\ \tilde{n}_1= & {} -\dfrac{(\delta k\mathscr {R}_0(d+r)+pr)r}{\mathscr {R}_0b\delta (\delta \mathscr {R}_0+r)},\\ \tilde{n}_2= & {} \dfrac{r^2p^2c(\delta k\mathscr {R}_0(d+r)+pr) (b\delta ^2\mu \mathscr {R}_0^3-cd\delta kr^2\mathscr {R}_0-c\delta kr^3\mathscr {R}_0 +b\delta \mu r\mathscr {R}_0^2-cpr^3)}{b^3\mathscr {R}_0^3\delta ^3(\delta \mathscr {R}_0+r)^3\mu }. \end{aligned}$$

Therefore, substituting (26) into (24), we have

$$\begin{aligned} \dfrac{\mathrm {d}w}{\mathrm {d}t}=&-cprb^2\mathscr {R}_0^2\delta ^2\mu (\delta k\mathscr {R}_0(d+r)+pr)\nonumber \\&(\delta \mathscr {R}_0+r)^2w^2+O(w^3), \end{aligned}$$
(29)

which yield that the origin (0, 0, 0) of system (24) is locally asymptotically stable. Thus, \(E_2\) is locally asymptotically stable when \(\xi (\mathscr {R}_0)=0\).

The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Cai, Y., Yao, R. et al. Complex dynamics in an eco-epidemiological model with the cost of anti-predator behaviors. Nonlinear Dyn 107, 3127–3141 (2022). https://doi.org/10.1007/s11071-021-07133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07133-4

Keywords

Navigation