Skip to main content
Log in

Study of LG-Holling type III predator–prey model with disease in predator

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this article, a Leslie–Gower Holling type III predator–prey model with disease in predator has been developed from both biological and mathematical point of view. The total population is divided into three classes, namely, prey, susceptible predator and infected predator. The local stability, global stability together with sufficient conditions for persistence of the ecosystem near biologically feasible equilibria have been thoroughly investigated. Boundedness and existence of the system are established. All the important analytical findings have been numerically verified by using program software MATLAB and Maple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atabaigi, A.: Bifurcation and chaos in a discrete time predator–prey system of Leslie type with generalized Holling type III functional response. J. Appl. Anal. Comput. 7(2), 411–426 (2017)

    MathSciNet  Google Scholar 

  2. Ali, N., Chakravarty, S.: Stability analysis of a food chain model consisting of two competitive preys and one predator. Nonlinear Dyn. 82(3), 1303–1316 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ali, N., Haque, M., Venturino, E., Chakravarty, S.: Dynamics of a three species ratio-dependent food chain model with intra-specific competition within the top predator. Comput. Biol. Med. 85, 63–74 (2017)

    Article  Google Scholar 

  4. Anderson, R.M., May, R.M.: Population Biology of Infectious Disease. Springer, Berlin (1982)

    Book  Google Scholar 

  5. Anderson, R.M., May, R.M.: Infectous Disease of Humans. Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  6. Arqub, O.A.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sci. 39(15), 4549–4562 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arqub, O.A.: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fund. Inform. 146(3), 231–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arqub, O.A., Rashaideh, H.: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Comput. Appl. 28, 1–12 (2017)

  9. Aziz-Alaoui, M.A.: Study of a Leslie–Gower-type tritrophic population model. Chaos Solitons Fractals 14(8), 1275–1293 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aziz-Alaoui, M.A., Okiye, M.D.: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Banerjee, M., Ghorai, S., Mukherjee, N.: Approximated spiral and target patterns in bazykins prey-predator model: multiscale perturbation analysis. Int. J. Bifurc. Chaos Appl. Sci. Eng. 27(03), 1750038 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bildik, N., Deniz, S.: A new efficient method for solving delay differential equations and a comparison with other methods. Eur. Phys. J. Plus 132(1), 51 (2017)

    Article  Google Scholar 

  13. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)

    MATH  Google Scholar 

  14. Chattapadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chattapadhyay, J., Pal, S., Abdllaoui, A.E.I.: Classical predator–prey system with infection of prey population-a mathematical model. Math. Methods Appl. Sci. 26, 1211–1222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deniz, S.: Optimal perturbation iteration method for solving nonlinear heat transfer equations. J. Heat Transf. 139(7), 074503 (2017)

    Article  Google Scholar 

  17. El-Gohary, A., Al-Ruzaiza, A.S.: Chaos and adaptive control in two prey, one predator system with nonlinear feedback. Chaos Solitons Fractals 34(2), 443–453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fatoorehchi, H., Abolghasemi, H.: Investigation of nonlinear problems of heat conduction in tapered cooling fins via symbolic programming. Appl. Appl. Math. 7, 717–734 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Fatoorehchi, H., Abolghasemi, H.: Improving the differential transform method: a novel technique to obtain the differential transforms of nonlinearities by the Adomian polynomials. Appl. Math. Model. 37(8), 6008–6017 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fatoorehchi, H., Zarghami, R., Abolghasemi, H., Rach, R.: Chaos control in the cerium-catalyzed Belousov–Zhabotinsky reaction using recurrence quantification analysis measures. Chaos Solitons Fractals 76, 121–129 (2015)

    Article  MATH  Google Scholar 

  21. Freedman, H.I.: A model of predator–prey dynamics modified by the action of a parasite. Math. Biosci. 99, 143–155 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gakkhar, S., Naji, R.K.: Existence of chaos in two-prey, one-predator system. Chaos Solitons Fractals 17(4), 639–649 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gard, T.C., Hallam, T.G.: Persistece in food web-1 Lotka-Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Ghosh, S., Roy, A., Roy, D.: An adaptation of Adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators. Comput. Methods Appl. Mech. Eng. 196(4), 1133–1153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, H.J., Song, X.Y.: An impulsive predator–prey system with modified Leslie–Gower and Holling type II schemes. Chaos Solitons Fractals 36, 1320–1331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27(6), 609–631 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hale, J.K.: Theory of Functional Differential Equations. Springer, NewYork (1977)

    Book  MATH  Google Scholar 

  28. Haque, M., Ali, N., Chakravarty, S.: Study of a tri-trophic prey-dependent food chain model of interacting populations. Math. Biosci. 246(1), 55–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Haque, M., Venturino, E.: Increase of the prey may decrease the healthy predator population in presence of a disease in the predator. Hermis 7(2), 39–60 (2006)

    MATH  Google Scholar 

  30. Haque, M., Venturino, E.: An ecoepidemiological model with disease in the predators; the ratio-dependent case. Math. Methods Appl. Sci. 30, 1791–1809 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97(S45), 5–60 (1965)

    Article  Google Scholar 

  32. Klebanoff, A., Hastings, A.: Chaos in one-predator, two-prey models: cgeneral results from bifurcation theory. Math. Biosci. 122(2), 221–233 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Korobeinikov, A., Maini, P.K.: Non-linear incidence and stability of infectious disease models. Math. Med. Biol. 22(2), 113–128 (2005)

    Article  MATH  Google Scholar 

  34. Li, M.Y., Graef, J.R., Wang, L., Karsai, J.: Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160(2), 191–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, X., HU, C., Feng, Z., Li, D: A periodic and diffusive predator–prey model with disease in the prey. Discrete Contin. Dyn. Syst. Ser. S 10(3), 445–461 (2017)

  36. Lin, Y., Jiang, D.: Long-time behavior of a stochastic predator–prey model with modified Leslie–Gower and Holling-type II schemes. Int. J. Biomath. 9(3), 1650039 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Momani, S., Arqub, O.A., Hayat, T., Al-Sulami, H.: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Volterra type. Appl. Math. Comput. 240, 229–239 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Murray, J.D.: Mathematical Biology. II Spatial Models and Biomedical Applications. Springer, New York (2001)

    Google Scholar 

  39. Pielou, E.C.: Population and Community Ecology: Principles and Methods. CRC Press, Boca Raton (1974)

    MATH  Google Scholar 

  40. Sarwardi, S., Haque, M., Venturino, E.: Global stability and persistence in LG-Holling type II diseased predator ecosystems. J. Biol. Phys. 37(6), 91–106 (2011)

    Article  Google Scholar 

  41. Sharma, S., Samanta, G.P.: A Leslie–Gower predator–prey model with disease in prey incorporating a prey refuge. Chaos Solitons Fractals 70, 69–84 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Song, X., Li, Y.: Dynamic behaviors of the periodic predator–prey model with modified Leslie–Gower Holling-type II schemes and impulsive effect. Nonlinear Anal. Real World Appl. 9(1), 64–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Venturino, E.: The influence of diseases on Lotka-Volterra systems. Rocky Mt. J. Math. 24, 381–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Venturino, E.: Epidemics in predator–prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)

    Article  MATH  Google Scholar 

  45. Xiao, Y., Chen, L.: Modeling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171(1), 59–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu, Y., Liu, M., Yang, Y.: Analysis of a stochastic two-predators one-prey system with modified Leslie–Gower and Holling-type II schemes. J. Appl. Anal. Comput. 7(2), 713–727 (2017)

    MathSciNet  Google Scholar 

  47. Yue, Q.: Dynamics of a modified Leslie–Gower predator–prey model with Holling-type II schemes and a prey refuge. Springerplus 5(1), 461 (2016)

    Article  Google Scholar 

  48. Zhuang, K., Jia, G.: The joint effects of diffusion and delay on the stability of a ratio-dependent predator–prey model. Adv. Difference Equ. 2017(1), 44(1-16) (2017)

    MathSciNet  Google Scholar 

  49. Zhang, Y., Chen, S., Gao, S., Fan, K., Wang, Q.: A new non-autonomous model for migratory birds with Leslie–Gower Holling-type II schemes and saturation recovery rate. Math. Comput. Simul. 132, 289–306 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors convey their sincere thanks and gratitude to all the reviewers for their suggestions towards the improvement of the paper. The second author Mr. Harekrishna Das gratefully acknowledges to ICCR (Indian Council for Cultural Relations), New Delhi [File No. 6-44/2015-16/ISD-II] for awarding scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Absos Ali Shaikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.A., Das, H. & Ali, N. Study of LG-Holling type III predator–prey model with disease in predator. J. Appl. Math. Comput. 58, 235–255 (2018). https://doi.org/10.1007/s12190-017-1142-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1142-z

Keywords

Mathematics Subject Classification

Navigation