Skip to main content
Log in

Dynamical characterization of fully nonlinear, nonsmooth, stall fluttering airfoil systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stall flutter is turning into a more likely condition to be encountered as the demand for increasingly more flexible wings grows for HALE-like aircraft. Due to the various nonlinearities involved that can lead to complex motion, the characterization of the dynamical behavior in the post-flutter condition becomes important. The dynamics of a pitch–plunge idealized HALE typical section with aerodynamic, structural and kinematic nonlinearities in the stall flutter regime was investigated using an aeroelastic state-space formulation which includes a modified Beddoes-Leishman dynamic stall model. The results reveal that period-doubling was possible without stall, but chaos arose at discontinuity-induced bifurcations due to dynamic stall. A parametric study has been conducted to assess the influence of key parameters in the development of bifurcations and chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dowell, E.H., Tang, D.M.: Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J. 40(9), 1697–1707 (2002). https://doi.org/10.2514/2.1853

    Article  Google Scholar 

  2. Patil, M.J., Hodges, D.H., Cesnik, C.E.S.: Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. J. Aircr. 38(1), 88–94 (2001). https://doi.org/10.2514/2.2738

    Article  Google Scholar 

  3. Patil, M.J., Hodges, D.H.: Flight dynamics of highly flexible flying wings. J. Aircr. 43(6), 1790–1799 (2006). https://doi.org/10.2514/1.17640

    Article  Google Scholar 

  4. Su, W., Cesnik, C.E.S.: Dynamic response of highly flexible flying wings. AIAA J. 49(2), 324–339 (2011). https://doi.org/10.2514/1.J050496

    Article  Google Scholar 

  5. Carr, L.W., McAlister, K.W., McCroskey, W.J.: Analysis of the development of dynamic stall based on oscillating airfoil experiments. Technical Report, NASA-TN-D-8382 (1977). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770010056.pdf

  6. McCroskey, W.J.: The phenomenon of dynamic stall. Technical Report, NASA-TM-81264 (1981). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810011501.pdf

  7. Choudhry, A., Leknys, R., Arjomandi, M., Kelso, R.: An insight into the dynamic stall lift characteristics. Exp. Therm. Fluid Sci. 58, 188–208 (2014). https://doi.org/10.1016/j.expthermflusci.2014.07.006

    Article  Google Scholar 

  8. Leishman, J.G., Beddoes, T.S.: A generalised model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method. In: Proceedings of the \( 42^{\text{nd}} \) Annual Forum of the American Helicopter Society. American Helicopter Society, 243–265 (1986)

  9. Li, X., Fleeter, S.: Dynamic stall generated airfoil oscillations including chaotic responses. In: \( 38^{\text{ th }} \) Structures, Structural Dynamics, and Materials Conference, 11–23 (1997). https://doi.org/10.2514/6.1997-1022

  10. Sarkar, S., Bijl, H.: Nonlinear aeroelastic behavior of an oscillating airfoil during stall-induced vibration. J. Fluids Struct. 24(6), 757–777 (2008). https://doi.org/10.1016/j.jfluidstructs.2007.11.004

    Article  Google Scholar 

  11. Tran, C.T., Petot, D.: Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of responses of a helicopter blade in forward flight. Vertica 5(1), 35–53 (1980)

    Google Scholar 

  12. Ramesh, K., Murua, J., Gopalarathnam, A.: Limit-cycle oscillations in unsteady flows dominated by intermittent leading-edge vortex shedding. J. Fluids Struct. 55, 84–105 (2015). https://doi.org/10.1016/j.jfluidstructs.2015.02.005

    Article  Google Scholar 

  13. Bethi, R.V., Gali, S.V., Venkatramani, J.: Response analysis of a pitch-plunge airfoil with structural and aerodynamic nonlinearities subjected to randomly fluctuating flows. J. Fluids Struct. 92, 102820 (2020). https://doi.org/10.1016/j.jfluidstructs.2019.102820

    Article  Google Scholar 

  14. Patil, M.J., Hodges, D.H., Cesnik, C.E.S.: Limit-cycle oscillations in high-aspect-ratio wings. J. Fluids Struct. 15(1), 107–132 (2001). https://doi.org/10.1006/jfls.2000.0329

    Article  Google Scholar 

  15. Tang, D.M., Dowell, E.H.: Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings. AIAA J. 39(8), 1430–1441 (2001). https://doi.org/10.2514/2.1484

    Article  Google Scholar 

  16. Arena, A., Lacarbonara, W., Marzocca, P.: Nonlinear aeroelastic formulation and postflutter analysis of flexible high-aspect-ratio wings. J. Aircr. 50(6), 1748–1764 (2013). https://doi.org/10.2514/1.C032145

    Article  Google Scholar 

  17. Silva, G.C., Donadon, M.V., Silvestre, F.J.: Experimental and numerical investigations on the nonlinear aeroelastic behavior of high aspect-ratio wings for different chord-wise store positions under stall and follower aerodynamic load models. Int. J. Non-Lin. Mech. 131, 103685 (2021). https://doi.org/10.1016/j.ijnonlinmec.2021.103685

    Article  Google Scholar 

  18. Sheta, E.F., Harrand, V.J., Thompson, D.E., Strganac, T.W.: Computational and experimental investigation of limit cycle oscillations of nonlinear aeroelastic systems. J. Aircr. 39(1), 133–141 (2002). https://doi.org/10.2514/2.2907

    Article  Google Scholar 

  19. Dimitriadis, G., Li, J.: Bifurcation behavior of airfoil undergoing stall flutter oscillations in low-Speed wind tunnel. AIAA J. 47(11), 2577–2596 (2009). https://doi.org/10.2514/1.39571

    Article  Google Scholar 

  20. Razak, N.A., Andrianne, T., Dimitriadis, G.: Flutter and stall flutter of a rectangular wing in a wind tunnel. AIAA J. 49(10), 2258–2271 (2011). https://doi.org/10.2514/1.J051041

    Article  Google Scholar 

  21. dos Santos, C.R., Pereira, D.A., Marques, F.D.: On limit cycle oscillations of typical aeroelastic section with different preset angles of incidence at low airspeeds. J. Fluids Struct. 74, 19–34 (2017). https://doi.org/10.1016/j.jfluidstructs.2017.07.008

    Article  Google Scholar 

  22. Vasconcellos, R.M.G., Pereira, D.A., Marques, F.D.: Characterization of nonlinear behavior of an airfoil under stall-induced pitching oscillations. J. Sound Vibr. 372, 283–298 (2016). https://doi.org/10.1016/j.jsv.2016.02.046

    Article  Google Scholar 

  23. Poirel, D., Goyaniuk, L., Benaissa, A.: Frequency lock-in in pitch-heave stall flutter. J. Fluids Struct. 79, 14–25 (2018). https://doi.org/10.1016/j.jfluidstructs.2018.01.006

    Article  Google Scholar 

  24. dos Santos, L.G.P., Marques, F.D.: Improvements on the Beddoes-Leishman dynamic stall model for low speed applications. J. Fluids Struct. 106, 103375 (2021). https://doi.org/10.1016/j.jfluidstructs.2021.103375

    Article  Google Scholar 

  25. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth dynamical systems: theory and applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  26. Peiró, J., Galvanetto, U., Chantharasenawong, C.: Assessment of added mass effects on flutter boundaries using the Leishman-Beddoes dynamic stall model. J. Fluids Struct. 26(5), 814–840 (2010). https://doi.org/10.1016/j.jfluidstructs.2010.04.002

    Article  Google Scholar 

  27. Lee, B.H.K., Gong, L., Wong, Y.S.: Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity. J. Fluids Struct. 11(3), 225–246 (1997). https://doi.org/10.1006/jfls.1996.0075

    Article  Google Scholar 

  28. dos Santos, L.G.P., Marques, F.D.: Nonlinear aeroelastic analysis of airfoil section under stall flutter oscillations and gust loads. J. Fluids Struct. 102, 103250 (2021). https://doi.org/10.1016/j.jfluidstructs.2021.103250

    Article  Google Scholar 

  29. Fung, Y.C.: An introduction to the theory of aeroelasticity, 1st edn. Dover Publications, USA (2008)

    MATH  Google Scholar 

  30. McAlister, K.W., Pucci, S.L., McCroskey, W.J., Carr, L.W.: An experimental study of dynamic stall on advanced airfoil sections. Volume 2: pressure and force data. Technical Report, NASA-TM-84245 (1982). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830003778.pdf

  31. Green, R.B., Giuni, M.: Dynamic stall database R and D 1570-AM-01: Final Report. Data collection (2017). https://doi.org/10.5525/gla.researchdata.464

  32. Sheng, W., Galbraith, R.A.M.C.D., Coton, F.N.: A new stall onset criterion for low speed dynamic stall. J. Solar Energy Eng. 128(4), 461–471 (2006). https://doi.org/10.1115/1.2346703

    Article  Google Scholar 

  33. Galvanetto, U., Peiró, J., Chantharasenawong, C.: An assessment of some effects of the nonsmoothness of the Leishman-Beddoes dynamic stall model on the nonlinear dynamics of a typical aerofoil section. J. Fluids Struct. 24(1), 151–163 (2008). https://doi.org/10.1016/j.jfluidstructs.2007.07.008

    Article  Google Scholar 

  34. Dimitriadis, G.: Introduction to nonlinear aeroelasticity, 1st edn. Wiley, Hoboken (2017)

    Book  Google Scholar 

  35. Leine, R.I., Nijmeijer, H.: Dynamics and bifurcations of non-smooth mechanical systems. Springer, Berlin (2004)

    Book  Google Scholar 

  36. Müller, P.C.: Calculation of Lyapunov exponents for dynamic systems with discontinuities. Chaos, Solitons Fractals 5(9), 1671–1681 (1995). https://doi.org/10.1016/0960-0779(94)00170-U

    Article  MathSciNet  MATH  Google Scholar 

  37. Leine, R.I., Van Campen, D.H., De Kraker, A., Van Den Steen, L.: Stick-slip vibrations induced by alternate friction models. Nonlin. Dyn. 16(1), 41–54 (1998). https://doi.org/10.1023/A:1008289604683

    Article  MATH  Google Scholar 

  38. Tancredi, G., Sánchez, A., Roig, F.: A comparison between methods to compute Lyapunov exponents. Astronom. J. 121(2), 1171–1179 (2001)

    Article  Google Scholar 

  39. Van Schoor, M.C., von Flotow, A.H.: Aeroelastic characteristics of a highly flexible aircraft. J. Aircr. 27(10), 901–908 (1990). https://doi.org/10.2514/3.45955

    Article  Google Scholar 

  40. International Civil Aviation Organization: Manual of the ICAO Standard Atmosphere. \(3^{\text{ rd }}\) ed (1993). Available at: http://www.aviationchief.com/uploads/9/2/0/9/92098238/icao_doc_7488_-_manual_of_icao_standard_atmosphere_-_3rd_edition_-_1994.pdf

  41. NASA Armstrong Fact Sheet: Helios Prototype. Available at: https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-068-DFRC.html

  42. Seydel, R.: Practical bifurcation and stability analysis, 3rd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  43. Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics: analytical, computational, and experimental methods, 1st edn. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  44. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations, 1st edn. Wiley, Hoboken (1995)

    Book  Google Scholar 

  45. Corke, T.C., Thomas, F.O.: Dynamic stall in pitching airfoils: aerodynamic damping and compressibility effects. Annu. Rev. Fluid Mech. 47, 479–505 (2015). https://doi.org/10.1146/annurev-fluid-010814-013632

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Council for Scientific and Technological Development—CNPq (grants #132154/2019-6 and #306824/2019-1) and São Paulo State Research Agency—FAPESP (grant #2017/02926-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. P. dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Semi-empirical model parameters

The Beddoes-Leishman model coefficients arising from the circulatory indicial functions for the NACA 0012 airfoil are given in Table 5:

Table 5 Circulatory indicial response coefficients for the NACA 0012 airfoil

Table 6 presents the constants used in the Beddoes-Leishman model as functions of the Mach number for that same airfoil. The values are spline interpolated for intermediary Mach numbers, and for \( M < 0.035 \), the values at \(M = 0.035\) are taken.

Table 6 NACA 0012 airfoil Mach-dependent empirical constants

Semi-empirical model functions

In Eqs. 16 –  18, the offsets of the breakpoint angles, \( \varDelta \alpha _{1_n} \), \( \varDelta \alpha _{1_m} \) and \( \varDelta \alpha _{1_c} \), are dependent of the current state space and on the motion condition (i.e., upstroke or downstroke), which are determined by the variables S and P. For instance, S determines if stall has occurred (if \( S = 1 \), stall has occurred), and P determines how light that stall was (if \( P \approx 1 \), stall was very light, if \( P \approx 0 \), stall was deep), given as

$$\begin{aligned} S&= {\left\{ \begin{array}{ll} 1 &{}\text{ if } \vert \theta _{max}\vert \ge 1 \text{ and } q{\bar{\alpha }}^{\prime } < 0 \text{(downstroke) } \\ 0 &{}\text{ otherwise } \end{array}\right. } \end{aligned}$$
(33)
$$\begin{aligned} P&= {\left\{ \begin{array}{ll} \exp {\left[ -\gamma _{LS}\left( {\theta _{max}}^4-1\right) \right] } &{}\text{ if } \vert \theta _{max}\vert \ge 1 \text{ and } q{\bar{\alpha }}^{\prime } < 0 \\ \\ 0 &{} \text{ otherwise } \end{array}\right. } \end{aligned}$$
(34)

where \( \gamma _{LS} \) is a Mach-dependent constant, and \( \theta _{max} \) is the maximum previously attained value of \( \theta \). An important caveat to be noticed is that \( \theta _{max} \) may be attained considerably after the end of the upstroke, that is, during the downstroke, since it is a function of the lagged effective angle of attack, \( {\bar{\alpha }}^{\prime } \). Since the P parameter affects the response on the downstroke, the value of \( \theta _{max} \) must be updated at every time-step as soon as it reaches a value above 1 and until it begins to decrease. Also, \( \theta _{max} \) must be reset to zero whenever \( \theta \) crosses zero. Then, the offsets of the breakpoint angles can be written as

$$\begin{aligned} \varDelta \alpha _{1_n}&= {\left\{ \begin{array}{ll} R^{\prime }_\theta (\alpha _{ds_0}-\alpha _{ss}) &{}\text{ if } q{\bar{\alpha }}^{\prime } > 0\\ -S\left[ \delta \alpha _0 + \delta \alpha _1 \frac{r}{r_0}\left( 1+2P\sqrt{R^{\prime }}\right) \right] &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \end{array}\right. } \end{aligned}$$
(35)
$$\begin{aligned} \varDelta \alpha _{1_m}&= {\left\{ \begin{array}{ll} \varDelta \alpha _{1_n} + d_m &{}\text{ if } q\alpha ^{\prime } > 0 \\ \varDelta \alpha _{1_n}\left( 1-z_mR^2\right) + d_m(1-R^{\prime }_\theta )\\ +S\delta \alpha _0(1-R^{\prime }_\theta ) &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \end{array}\right. } \end{aligned}$$
(36)
$$\begin{aligned} \varDelta \alpha _{1_c}&= {\left\{ \begin{array}{ll} \varDelta \alpha _{1_n}z_c + d_c\left( 1-R^{\prime }_\theta \right) &{}\text{ if } q{\bar{\alpha }}^{\prime } > 0 \\ \varDelta \alpha _{1_n}\left[ 1+\left( 1-R^{\prime }_\theta \right) \left( 1-P\right) \right] \\ + d_c(1-R^{\prime }_\theta )+S\delta \alpha _0(1-R^{\prime }_\theta ) &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \end{array}\right. } \end{aligned}$$
(37)

where \( \delta \alpha _0 \), \( \delta \alpha _1 \), \( d_m \), \( d_c \), \( z_m \) and \( z_c \) are Mach-dependent constants.

Still referring to Eqs. 16 to 18, the \( S_1^{\prime } \) and \( S_2^{\prime } \) coefficients are

$$\begin{aligned}&S_{1_n}^{\prime } = {\left\{ \begin{array}{ll} S_1 &{}\text{ if } q{\bar{\alpha }}^{\prime } > 0 \text{(upstroke) } \\ S_1\left( 1+R^2\right) &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \text{(downstroke) } \end{array}\right. } \end{aligned}$$
(38)
$$\begin{aligned}&S_{2_n}^{\prime } = {\left\{ \begin{array}{ll} S_2\left[ 1+(1-R^{\prime ^{1/2}})/3+5\sigma _2\left( R^{\prime }-R^{\prime ^2}\right) \right] &{}\text{ if } q{\bar{\alpha }}^{\prime } > 0 \\ S_2\left[ 1+(1-R^{\prime ^{1/2}})/3+5\sigma _2\left( R^{\prime }-R^{\prime ^2}\right) +5\sigma _1\right] &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \end{array}\right. } \end{aligned}$$
(39)
$$\begin{aligned}&S_{1_m}^{\prime } = S_1\left( 1-R^{\prime ^2}/2\right) \end{aligned}$$
(40)
$$\begin{aligned}&S_{2_m}^{\prime } = {\left\{ \begin{array}{ll} S_2\left( 1+R^{\prime }\right) &{}\text{ if } q{\bar{\alpha }}^{\prime } > 0 \\ S_2\left( 1+2R^{\prime }\right) &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \end{array}\right. } \end{aligned}$$
(41)
$$\begin{aligned}&S_{1_c}^{\prime } = {\left\{ \begin{array}{ll} S_1\left( 1-3R^{\prime }/4\right) &{}\text{ if } q{\bar{\alpha }}^{\prime } > 0 \\ S_1\left( 1+R^{\prime }\right) &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \end{array}\right. } \end{aligned}$$
(42)
$$\begin{aligned}&S_{2_c}^{\prime } = {\left\{ \begin{array}{ll} S_2\left( 1+2R^{2}\right) &{}\text{ if } q{\bar{\alpha }}^{\prime } > 0 \\ S_2\left( 1+2R^{2}+2\sigma _1R^{\prime ^{1/4}}\right) &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \end{array}\right. } \end{aligned}$$
(43)

where \( \sigma _1 \) and \( \sigma _2 \) are given as

$$\begin{aligned} \sigma _1&= {\left\{ \begin{array}{ll} P^3(1-T) &{}\text{ if } \vert \theta _{max}\vert \ge 1 \\ 0 &{}\text{ otherwise } \end{array}\right. } \end{aligned}$$
(44)
$$\begin{aligned} \sigma _2&= {\left\{ \begin{array}{ll} \min \left( \left[ {\theta _{min}}^{5/2}; \;\; 1/2 \right] \right) &{}\text{ if } {{\,\mathrm{sgn}\,}}{\left( {\bar{\alpha }}^{\prime }\theta _{min}\right) } = 1 \\ 0 &{}\text{ otherwise } \end{array}\right. } \end{aligned}$$
(45)

in which \( \theta _{min} \) is the minimum previously attained value of \( \theta \), analogous to \( \theta _{max} \). Furthermore, the totally separated flow points are:

$$\begin{aligned} f_{0_n} =&\; f_0 + \frac{1}{4}\sigma _2\left\{ \frac{1}{2}\left[ 1-\cos {\left( 2\pi {R^{\prime }_{tv}}\right) }\right] +\frac{1-{R^{\prime }_{tv}}^{2}}{5}\right\} \end{aligned}$$
(46)
$$\begin{aligned} f_{0_m} =&\; f_0 + \frac{1}{4}\sigma _2\left\{ \frac{1}{2}\left[ 1-\cos {\left( 2\pi {R^{\prime }_{tv}}\right) }\right] +1-{R^{\prime }_{tv}}^{2}\right\} \end{aligned}$$
(47)
$$\begin{aligned} f_{0_c} =&\; f_0 + \frac{1}{4}\sigma _2\left\{ \left[ 1-\cos {\left( 2\pi {R^{\prime }_{tv}}\right) }\right] +1-{R^{\prime }_{tv}}^{2}\right\} \end{aligned}$$
(48)

At last, the time delay variables are:

$$\begin{aligned} T_{f_n}&= {\left\{ \begin{array}{ll} T_{f_0} &{}\text{ if } q{\bar{\alpha }}^{\prime } > 0 \\ T_{f_0}\left[ 1+S\left( R^{\prime ^{-1/4}}-R^{1/4}\right) \right] &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \end{array}\right. } \end{aligned}$$
(49)
$$\begin{aligned} T_{f_m}&= {\left\{ \begin{array}{ll} T_{f_0} &{}\text{ if } q{\bar{\alpha }}^{\prime } > 0 \\ T_{f_n}/(4-2P) &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \end{array}\right. } \end{aligned}$$
(50)
$$\begin{aligned} T_{f_c}&= {\left\{ \begin{array}{ll} T_{f_0}/2 &{}\text{ if } q{\bar{\alpha }}^{\prime }> 0 \text{ and } \vert \theta \vert< 1 \\ T_{f_0}\theta ^2/2 &{}\text{ if } q{\bar{\alpha }}^{\prime }> 0 \text{ and } \vert \theta \vert> 1 \\ T_{f_0}\left( 1/2+R\right) &{}\text{ if } q{\bar{\alpha }}^{\prime }< 0 \text{ and } \vert \theta \vert< 1 \\ T_{f_0}\left( \theta ^2/2+R\right) &{}\text{ if } q{\bar{\alpha }}^{\prime } < 0 \text{ and } \vert \theta \vert > 1 \end{array}\right. } \end{aligned}$$
(51)

where \( T_{f_0} \) is a Mach-dependent constant time delay. The factor \( \zeta _c \) in Eq. 24 is:

$$\begin{aligned} \zeta _c = \min \left( \left[ {R^{\prime }}^{-1}; \;\; 20 \right] \right) \end{aligned}$$
(52)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, L.G.P., Marques, F.D. & Vasconcellos, R.M.G. Dynamical characterization of fully nonlinear, nonsmooth, stall fluttering airfoil systems. Nonlinear Dyn 107, 2053–2074 (2022). https://doi.org/10.1007/s11071-021-07097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07097-5

Keywords

Navigation