Skip to main content
Log in

Discontinuous dynamics for a class of 3-DOF friction and collision system with symmetric bilateral rigid constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the discontinuous dynamic behaviors of a class of three-degree-of-freedom friction and collision system with symmetric bilateral rigid constraints by using the flow switching theory of discontinuous dynamical systems. The model takes into account the inequality of static and dynamic friction forces, which is more common in practice. The external excitation of the object contains a negative feedback, which can change with the variation of the velocity of the object, so that the system can adapt to different external environment. And the connection between the objects adopts nonlinear springs and viscous dampers in order to achieve a better vibration reduction effect. The model can be applied to mechanical equipment such as shock absorbers etc. According to the discontinuity caused by friction and collision, the dynamic domain and boundary of the object’s motion are defined in phase space, which requires the introduction of absolute coordinates and relative coordinates respectively to discuss the motion between objects. The vector field for the respective domain in the system is given, which can control the motion of object in each domain. The corresponding normal vector on the discontinuous boundary is introduced to determine the positive direction of the flow. The sufficient and necessary conditions for the switching motion of such dynamical system are given based on \(\mathrm{G}\)-function and its higher order. These switching conditions can be used to predict or even control the motion of the object on the separation boundary. In addition, several typical motions, such as sliding, stick, grazing, impact motions and periodic motion, are numerically simulated to better explain the complexity of the switching motion in the discontinuous dynamic system. Finally, the stick bifurcation scenarios for excitation frequency or amplitude are presented. The research results obtained can provide a theoretical basis for better use or control of friction and collision in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Filippov, A.F.: Differential equations with discontinuous right-hand side. Am. Math. Soc. Transl. 2(42), 99–231 (1964)

    MATH  Google Scholar 

  2. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  3. Capone, G., D’Agostino, V., Valle, S.D., Guida, D.: Influence of the variation between static and kinetic friction on stick-slip instability. Wear 161, 121–126 (1993)

  4. Galvanetto, U.: Some discontinuous bifurcations in a two-block stick-slip system. J. Sound Vib. 248(4), 653–669 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreaus, U., Casini, P.: Dynamics of friction oscillators excited by a moving base and/or drving force. J. Sound Vib. 245(4), 685–699 (2001)

    Article  Google Scholar 

  6. Luo, A., Gegg, B.: An analytical prediction of sliding motions along discontinuous boundary in non-smooth dynamical systems. Nonlinear Dyn. 49, 401–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Olejnik, P., Awrejcewicz, J.: Application of Hénon method in numerical estimation of the stick-slip transitions existing in Filippov-type discontinuous dynamical systems with dry friction. Nonlinear Dyn. 73, 723–736 (2013)

    Article  Google Scholar 

  8. Olejnik, P., Awrejcewicz, J., Fečkan, M.: An approximation method for the numerical solution of planar discontinuous dynamical systems with stick-slip friction. Appl. Math. Sci. 8(145), 7213–7238 (2014)

    Google Scholar 

  9. Liu, P., Yu, H., Cang, S.: On the dynamics of a vibro-driven capsule system. Arch. Appl. Mech. 88, 2199–2219 (2018)

    Article  Google Scholar 

  10. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. ASME Appl. Mech. Rev 58(6), 389–411 (2005)

    Article  Google Scholar 

  11. Shaw, S.W.: The dynamics of a harmonically excited system having rigid amplitude constraints, part 1: subharmonic motions and local bifurcations. J. Appl. Mech. 52(2), 453–458 (1985)

    Article  MathSciNet  Google Scholar 

  12. Shaw, S.W.: The dynamics of a harmonically excited system having rigid amplitude constraints, part 2: subharmonic motions and local bifurcations. J. Appl. Mech. 52(2), 459–464 (1985)

    Article  MathSciNet  Google Scholar 

  13. Nguten, D.T., Noah, S.T., Kettleborough, C.F.: Impact behaviour of an oscillator with limiting stops, part I: a parametric study. J. Sound Vib. 109(2), 293–307 (1986)

    Article  Google Scholar 

  14. Tung, C.P.: The Dynamics of a nonharmonically excited system having rigid amplitude constraints. J. Appl. Mech. 59(3), 693–695 (1992)

    Article  Google Scholar 

  15. Wiercigroch, M., Sin, V.W.T., Li, K.: Measurement of chaotic vibration in a symmetrically piecewise linear oscillator. Chaos, Solitons Fractals 9, 209–220 (1998)

    Article  Google Scholar 

  16. Pust, L., Peterka, F.: Impact oscillator with Hertz’s model of contact. Meccanica 38(1), 99–116 (2003)

  17. Gendelman, O.V.: Modeling of inelastic impacts with the help of smooth-functions. Chaos, Solitons Fractals 28, 522–526 (2006)

    Article  MATH  Google Scholar 

  18. Luo, G., Xie, J., Zhu, X., Zhang, J.: Periodic motions and bifurcations of a vibro-impact system. Chaos, Solitons Fractals 36, 1340–1347 (2008)

    Article  Google Scholar 

  19. Zhao, X.: Discontinuity Mapping for Near-Grazing Dynamics in Vibro-Impact Oscillators, pp. 275–285. Springer, Berlin (2009)

    Google Scholar 

  20. Aguiar, R.R., Weber, H.I.: Mathematical modeling and experimental investigation of an embedded vibro-impact system. Nonlinear Dyn. 65, 317–334 (2011)

    Article  Google Scholar 

  21. Chu, S., Cao, D., Sun, S., Pan, J., Wang, L.: Impact vibration characteristics of a shrouded blade with asymmetric gaps under wake flow excitations. Nonlinear Dyn. 72, 539–554 (2013)

    Article  MathSciNet  Google Scholar 

  22. Czolczynski, K., Blazejczyk-Okolewska, B., Okolewski, A.: Analytical and numerical investigations of stable periodic solutions of the impacting oscillator with a moving base. Int. J. Mech. Sci. 115–116, 325–338 (2016)

    Article  Google Scholar 

  23. Hedrih, K.R.S.: Nonlinear phenomena in vibro-impact dynamics: central collisions and energy jumps between two rolling bodies. Nonlinear Dyn. 91, 1885–1907 (2018)

    Article  Google Scholar 

  24. Kumar, P., Narayanan, S.: Chaos and bifurcation analysis of stochastically excited discontinuous nonlinear oscillators. Nonlinear Dyn. 102, 927–950 (2020)

    Article  Google Scholar 

  25. Luo, G., Zhang, Y.: Analyses of impact motions of harmonically excited systems having rigid amplitude constraints. Int. J. Impact Eng 34, 1883–1905 (2007)

    Article  Google Scholar 

  26. Luo, G., Zhang, Y., Xie, J., Zhang, J.: Vibro-impact dynamics near a strong resonance point. Acta. Mech. Sin. 23, 329–341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Manevitch, L.I.: Vibro-Impact Models for Smooth Non-linear Systems, pp. 191–201. Springer, Berlin (2009)

    Google Scholar 

  28. Fu, X., Zheng, S.: New approach in dynamics of regenerative chatter research of turning. Commun. Nonlinear Sci. Numer. Simulat. 19, 4013–4023 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo, G.W., Shi, Y.Q., Jiang, C.X., Zhao, L.Y.: Diversity evolution and parameter matching of periodic-impact motions of a periodically forced system with a clearance. Nonlinear Dyn. 78, 2577–2604 (2014)

    Article  Google Scholar 

  30. Moreau, J.: Unilateral contact and dry friction in finite freedom dynamics. Nonsmooth Mech. Appli. 302, 1–82 (1988)

    MATH  Google Scholar 

  31. Cone, K.M., Zadoks, R.I.: A numerical study of an impact oscillator with the addition of dry friction. J. Sound Vib. 188(5), 659–683 (1995)

    Article  Google Scholar 

  32. Hinrichs, N., Oestreich, M., Popp, K.: Dynamics of oscillators with impact and friction. Chaos, Solitons Fractals 8(4), 535–558 (1997)

    Article  MATH  Google Scholar 

  33. Yigit, A.S., Christoforou, A.P.: Coupled torsional and bending vibrations of drillstrings subject to impact with friction. J. Sound Vib. 215(1), 167–181 (1998)

    Article  Google Scholar 

  34. Virgin, L.N., Begley, C.J.: Grazing bifurcations and basins of attraction in an impact-friction oscillator. Physica D 130, 43–57 (1999)

    Article  MATH  Google Scholar 

  35. Virgin, L.N., Begley, C.J.: Nonlinear features in the dynamics of an impact-friction oscillator. AIP Conf. Proc. 502, 469–475 (2000)

    Article  Google Scholar 

  36. Krivtsov, A.M., Wiercigroch, M.: Dry friction model of percussive drilling. Meccanica 34(6), 425–434 (1999)

    Article  MATH  Google Scholar 

  37. Lankarani, H.M., Pereira, M.: Treatment of impact with friction in planar multibody mechanical systems. Multibody Syst. Dyn. 6, 203–227 (2001)

    Article  MATH  Google Scholar 

  38. Andreaus, U., Casini, P.: Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle. Int. J. Non-linear Mech. 37, 117–133 (2002)

    Article  MATH  Google Scholar 

  39. Pavlovskaia, E., Wiercigroch, M., Woo, K.C., Rodger, A.A.: Modelling of ground moling dynamics by an impact oscillator with a frictional slider. Meccanica 38(1), 85–97 (2003)

    Article  MATH  Google Scholar 

  40. Marghitu, D.B., Stoenescu, E.D.: Rigid body impact with moment of rolling friction. Nonlinear Dyn. 50, 597–608 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dankowicz, H., Svahn, F.: Control of instabilities induced by low-velocity collisions in a vibro-impacting system with friction, pp. 41–52. Springer, Berlin (2009)

    MATH  Google Scholar 

  42. Nordmarka, A., Dankowiczb, H., Champneys, A.: Discontinuity-induced bifurcations in systems with impacts and friction: discontinuities in the impact law. Int. J. Non-linear Mech. 44, 1011–1023 (2009)

    Article  Google Scholar 

  43. Ho, J.H., Nguyen, V.D., Woo, K.C.: Nonlinear dynamics of a new electro-vibro-impact system. Nonlinear Dyn. 63, 35–49 (2011)

    Article  MATH  Google Scholar 

  44. Ghaednia, H., Marghitu, D.B.: Permanent deformation during the oblique impact with friction. Arch. Appl. Mech. 86, 121–134 (2016)

    Article  Google Scholar 

  45. Pascal, M.: A new model of dry friction oscillator colliding with a rigid obstacle. Nonlinear Dyn. 91(1), 1–10 (2018)

    Google Scholar 

  46. Luo, A., Guo, C.: A period-1 motion to chaos in a periodically forced, damped, double-pendulum. J. Vib. Test. Syst. Dyn. 3(3), 259–280 (2019)

    Google Scholar 

  47. Xing, S., Luo, A.: On period-1 motions to chaos in a 1-dimensional, time-delay, nonlinear system. Int. J. Dyn. Control 8, 44–50 (2020)

    Article  Google Scholar 

  48. Chatterjee, A., Bowling, A.: Modeling three-dimensional surface-to-surface rigid contact and impact. Multibody Syst. Dyn. 46, 1–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, X., Shen, J., Akca, H., Rakkiyappan, R.: LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter. Appl. Math. Comput. 250, 798–804 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Li, X., Shen, J., Rakkiyappan, R.: Persistent impulsive effects on stability of functional differential equations with finite or infinite delay. Appl. Math. Comput. 329, 14–22 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Liu, Y., Zhang, Y., Li, H., Alsaadi, F., Ahmad, B.: Control design for output tracking of delayed Boolean control networks. J. Comput. Appl. Math. 327, 188–195 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xu, X., Li, H., Li, Y., Alsaadi, F.: Output tracking control of Boolean control networks with implusive effects. Math. Method Appl. Sci. 41(4), 1554–1564 (2018)

    Article  MATH  Google Scholar 

  53. Li, H., Xu, X., Ding, X.: Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect. Appl. Math. Comput. 347, 557–565 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Fan, J., Li, L.: Existence of positive solutions for P-Laplacian dynamic equations with derivative on time scales. J. Appl. Math. 7 (2013)

  55. Wagg, D.: Multiple non-smooth events in multi-degree-of-freedom vibro-impact systems. Nonlinear Dyn. 43, 137–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhao, Z., Liu, C., Chen, B.: The numerical method for three-dimensional impact with friction of multi-rigid-body system. Sci. China Ser. G 49(1), 102–118 (2006)

    Article  MATH  Google Scholar 

  57. Zhao, Z., Liu, C.: The analysis and simulation for three-dimensional impact with friction. Multibody Syst. Dyn. 18, 511–530 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pfeiffer, F.: On Impacts with Friction in Engineering Systems, pp. 217–230. Springer, Berlin (2009)

    Google Scholar 

  59. Awrejcewicz, J., Kudra, G.: Bifurcation and chaos of multi-body dynamical systems. Springer Proceedings in Physics 139 (2011)

  60. Flores, P., Leine, R., Glocker, C.: Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dyn. 69, 2117–2133 (2012)

    Article  MathSciNet  Google Scholar 

  61. Fadaee, M., Yu, S.: Vibrational behavior of MDOF oscillators subjected to multiple contact constraints. J. Mech. Sci. Technol. 31(4), 1551–1560 (2017)

    Article  Google Scholar 

  62. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: Modeling and analysis of friction including rolling effects in multibody dynamics: a review. Multibody Syst. Dyn. 45(2), 223–244 (2019)

    Article  MathSciNet  Google Scholar 

  63. Xu, H., Ji, J.: Creation of Neimark-Sacker bifurcation for a three-degree-of-freedom vibro-impact system with clearances. Nonlinear Dyn. Struct. Syst. Devices 1, 107–115 (2020)

    Article  Google Scholar 

  64. Luo, A.: A theory for non-smooth dynamic systems on the connectable domains. Commun. Nonlinear Sci. Numer. Simul. 10, 1–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Luo, A.: Flow switching bifurcations on the separation boundary in discontinuous dynamical systems with flow barriers. Proc. IMechE Part K J. Multi-Body Dyn. 221, 475–485 (2007)

    Google Scholar 

  66. Luo, A.: On flow switching bifurcations in discontinuous dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 12, 100–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. Luo, A.: A theory for flow switchability in discontinuous dynamical systems. Nonlinear Anal. Hybrid Syst 2, 1030–1061 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Luo, A., Zwiegart, P.: Existence and analytical predictions of periodic motions in a periodically forced, nonlinear friction oscillator. J. Sound Vib. 309(1–2), 129–149 (2008)

    Article  Google Scholar 

  69. Luo, A.: Discontinuous Dynamical Systems. Higher Education Press, Beijing (2010)

    Book  Google Scholar 

  70. Fan, J., Yang, Z.: Analysis of dynamical behaviors of a 2-DOF vibro-impact system with dry friction. Chaos, Solitons Fractals 116, 176–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  71. Li, C., Fan, J., Yang, Z., Xue, S.: On discontinuous dynamical behaviors of a 2-DOF impact oscillator with friction and a periodically forced excitation. Mech. Mach. Theory 135, 81–108 (2019)

    Article  Google Scholar 

  72. Huang, J., Fu, X.: Stability and chaos for an adjustable excited oscillator with system switch. Commun. Nonlinear Sci. Numer. Simul. 77, 108–125 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  73. Gao, M., Fan, J.: Analysis of dynamical behaviors of a 2-DOF friction oscillator with elastic impacts and negative feedbacks. Nonlinear Dyn. 102, 45–78 (2020)

    Article  Google Scholar 

  74. Huang, J., Fu, X., Jing, Z.: Singular dynamics for morphing aircraft switching on the velocity boundary. Commun. Nonlinear Sci. Numer. Simul. 95,(2021)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 11971275) and the Natural Science Foundation of Shandong Province, China (No. ZR2019MA048). The authors would like to thank the Associate Editor and the anonymous reviewers for their constructive comments and suggestions which improved the quality of this paper a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Without appearance of stick, the different domains of the masses \(m_1\) and \(m_2\) are defined as

$$\begin{aligned} \left\{ \begin{array}{l} \Omega _{1}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;\dot{x }_{1}>\dot{x }_{2},\;|{x }_{1}-{x }_{2}|<H\},\\ \Omega _2^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;\dot{x }_{1}<\dot{x }_{2},\;|{x }_{1}-{x }_{2}|<H\},\\ \Omega _{\xi ^\theta }^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\;{(-1)^\xi }\dot{x }_{2}>{(-1)^\xi }\dot{x }_{1},\;{(-1)^\theta }\dot{x }_{2}>0,\;|{x }_{2}-{x }_{1}|<H\}, \end{array}\right. \end{aligned}$$
(80)

and the corresponding boundaries are denoted by

$$\begin{aligned}&\left\{ \begin{array}{l} \partial \Omega _{12}^{(1)}=\partial \Omega _{21}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{12}^{(1)}=\varphi _{21}^{(1)}\equiv \dot{x }_{1}-\dot{x }_{2}=0,\;|{x }_{1}-{x }_{2}|<H\bigr \},\\ \partial \Omega _{{1^\theta }{2^\theta }}^{(2)}\!=\!\partial \Omega _{{2^\theta }{1^\theta }}^{(2)}\!=\!\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{{1^\theta }{2^\theta }}^{(2)}\!=\!\varphi _{{2^\theta }{1^\theta }}^{(2)}\!\equiv \! \dot{x }_{2}\!-\!\dot{x }_{1}\!=\!0,\;{(-1)^\theta }\dot{x }_{2}\!>\!0,\;|{x }_{2}\!-\!{x }_{1}|\!<\!H\bigr \},\\ \partial \Omega _{{\xi ^0}{\xi ^1}}^{(2)}\!=\!\partial \Omega _{{\xi ^1}{\xi ^0}}^{(2)}\!=\!\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{{\xi ^0}{\xi ^1}}^{(2)}\!=\!\varphi _{{\xi ^1}{\xi ^0}}^{(2)}\!\equiv \! \dot{x }_{2}\!=\!0,\;{(-1)^\xi }\dot{x }_{2}\!>\!{(-1)^\xi }\dot{x }_{1},\;|{x }_{2}\!-\!{x }_{1}|\!<\!H\bigr \}, \end{array}\right. \end{aligned}$$
(81)
$$\begin{aligned}&\left\{ \begin{array}{l} {}^+\!\partial \Omega _{1\infty }^{(i)}=\bigl \{(x _{i},\dot{x }_{i})\;|\;{}^+\!\varphi _{1\infty }^{(i)}\equiv x _{i}-x _{\overline{i}}+(-1)^{i}H=0,\;(-1)^{i}\dot{x }_{i}<(-1)^{i}\dot{x }_{\overline{i}}\},\\ {}^+\!\partial \Omega _{2\infty }^{(i)}=\bigl \{(x _{i},\dot{x }_{i})\;|\;{}^+\!\varphi _{2\infty }^{(i)}\equiv x _{i}-x _{\overline{i}}+(-1)^{i}H=0,\;(-1)^{i}\dot{x }_{i}>(-1)^{i}\dot{x }_{\overline{i}}\},\\ {}^-\!\partial \Omega _{1\infty }^{(i)}=\bigl \{(x _{i},\dot{x }_{i})\;|\;{}^-\!\varphi _{1\infty }^{(i)}\equiv x _{i}-x _{\overline{i}}-(-1)^{i}H=0,\;(-1)^{i}\dot{x }_{i}<(-1)^{i}\dot{x }_{\overline{i}}\},\\ {}^-\!\partial \Omega _{2\infty }^{(i)}=\bigl \{(x _{i},\dot{x }_{i})\;|\;{}^-\!\varphi _{2\infty }^{(i)}\equiv x _{i}-x _{\overline{i}}-(-1)^{i}H=0,\;(-1)^{i}\dot{x }_{i}>(-1)^{i}\dot{x }_{\overline{i}}\}, \end{array}\right. \end{aligned}$$
(82)

where \(i\ne \overline{i}\in \{1,2\},\,\xi \in \{1,2\}\,\,\mathrm and\,\,\theta \in \{0,1\}\).

The vertex of boundaries are defined as

$$\begin{aligned}&\angle \Omega _{12}^{(2)}=\partial \Omega _{{1^0}{1^1}}^{(2)} \bigcap {\partial \Omega _{{2^0}{2^1}}^{(2)}}\bigcap {\partial \Omega _{{1^0}{2^0}}^{(2)}} \bigcap {\partial \Omega _{{1^1}{2^1}}^{(2)}}\nonumber \\&\quad \!=\!\bigl \{(x _{2},\dot{x }_{2})\; |\;\varphi _{{1^\theta }{2^\theta }}^{(2)}\!=\!\varphi _{{2^\theta }{1^\theta }}^{(2)}\!\equiv \! \dot{x }_{2}\!-\!\dot{x }_{1}\!=\!0,\;\nonumber \\&\quad \varphi _{{\xi ^0}{\xi ^1}}^{(2)}\!=\!\varphi _{{\xi ^1}{\xi ^0}}^{(2)} \!\equiv \! \dot{x }_{2}\!=\!0,\;|{x }_{2}\!-\!{x }_{1}|\!<\!H\},\nonumber \\ \end{aligned}$$
(83)

where \(\xi \in \{1,2\}\,\,\mathrm{and}\,\,\theta \in \{0,1\}\).

The above domains and boundaries are shown in Fig. 10a, b. The domains \(\Omega _1^{(1)}\) and \(\Omega _2^{(1)}\) represent the domains where the mass \(m _{1}\) does free-flight motion without stick and are expressed in gray and purple, respectively. The domains \(\Omega _{\xi ^0}^{(2)}\) and \(\Omega _{\xi ^1}^{(2)}\) \((\xi =1,2)\) represent the domains where the mass \(m _{2}\) does free-flight motion without stick and are expressed in different shades of gray and purple, respectively. The velocity boundaries \(\partial \Omega _{12}^{(1)}\), \(\partial \Omega _{{1^0}{2^0}}^{(2)}\) and \(\partial \Omega _{{1^1}{2^1}}^{(2)}\) are expressed in red dashed lines and the impact-chatter boundaries \( {}^+\!\partial \Omega _{\tau \infty }^{(i)}\) and \( {}^-\!\partial \Omega _{\tau \infty }^{(i)}\) \( (i=1,2 ,\tau =1,2)\) are expressed in black dashed curves. Furthermore, the stuck boundaries \(\partial \Omega _{{1^0}{1^1}}^{(2)}\) and \(\partial \Omega _{{2^0}{2^1}}^{(2)}\) for the mass \(m _{2}\) are expressed in orange dashed lines.

Fig. 10
figure 10

Absolute domains and boundaries without appearance of stick: a mass \(m_{1}\) and b mass \(m_{2}\)

Fig. 11
figure 11

Absolute domains and boundaries with appearance of stick for the two masses: a mass \(m_{1}\) and b mass \(m_{2}\)

With appearance of stick, the different domains of the masses \(m_1\) and \(m_2\) are defined as

$$\begin{aligned}&\left\{ \begin{array}{l} \Omega _{1}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;\dot{x }_{1}>\dot{x }_{2},\;{x }_{1}\in ({x }_{cr}^{(2)}-H, {x }_{cr}^{(2)}+H)\},\\ \Omega _2^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\; \dot{x }_{1}<\dot{x }_{2},\;{x }_{1}\in ({x }_{cr}^{(2)}-H, {x }_{cr}^{(2)}+H)\},\\ \Omega _3^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\; \dot{x }_{1}=\dot{x }_{2},\;{x }_{1}\in ( {x }_{cr}^{(2)}+H, +\infty )\},\\ \Omega _4^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\; \dot{x }_{1}=\dot{x }_{2},\;{x }_{1}\in (-\infty , {x }_{cr}^{(2)}-H)\}, \end{array}\right. \end{aligned}$$
(84)
$$\begin{aligned}&\left\{ \begin{array}{l} \Omega _{\xi ^\theta }^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\;{(-1)^\xi }\dot{x }_{2}>{(-1)^\xi }\dot{x }_{1},\;{(-1)^\theta }\dot{x }_{2}>0,\;{x }_{2}\in ({x }_{cr}^{(1)}-H, {x }_{cr}^{(1)}+H)\},\\ \Omega _{3^\theta }^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\; \dot{x }_{1}=\dot{x }_{2},\;{(-1)^\theta }\dot{x }_{2}>0,\;{x }_{2}\in (-\infty , {x }_{cr}^{(1)}-H)\},\\ \Omega _{4^\theta }^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\; \dot{x }_{1}=\dot{x }_{2},\;{(-1)^\theta }\dot{x }_{2}>0,\;{x }_{2}\in ( {x }_{cr}^{(1)}+H, +\infty )\}, \end{array}\right. \end{aligned}$$
(85)

and the corresponding boundaries are denoted by

$$\begin{aligned}&\left\{ \begin{array}{l} \partial \Omega _{12}^{(1)}=\partial \Omega _{21}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{12}^{(1)}=\varphi _{21}^{(1)}\equiv \dot{x }_{1}-\dot{x }_{2}=0,\;{x }_{1}\in ({x }_{cr}^{(2)}-H, {x }_{cr}^{(2)}+H)\bigr \},\\ \partial \Omega _{{1^\theta }{2^\theta }}^{(2)}=\partial \Omega _{{2^\theta }{1^\theta }}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{{1^\theta }{2^\theta }}^{(2)}=\varphi _{{2^\theta }{1^\theta }}^{(2)}\!\equiv \! \dot{x }_{2}-\dot{x }_{1}=0,{(-1)^\theta }\dot{x }_{2}>0,{x }_{2}\in ({x }_{cr}^{(1)}-H, {x }_{cr}^{(1)}\!+\!H)\!\bigr \},\\ \partial \Omega _{{\xi ^0}{\xi ^1}}^{(2)}=\partial \Omega _{{\xi ^1}{\xi ^0}}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{{\xi ^0}{\xi ^1}}^{(2)}=\varphi _{{\xi ^1}{\xi ^0}}^{(2)}\!\equiv \! \dot{x }_{2}=0,{(-1)^\xi }\dot{x }_{2}\!>\!{(-1)^\xi }\dot{x }_{1},{x }_{2}\!\in \!({x }_{cr}^{(1)}-H, {x }_{cr}^{(1)}\!+\!H)\!\bigr \},\\ \partial \Omega _{{3^0}{3^1}}^{(2)}=\partial \Omega _{{3^1}{3^0}}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{{3^0}{3^1}}^{(1)}=\varphi _{{3^1}{3^0}}^{(1)}\equiv \dot{x }_{2}=0,\;\dot{x }_{2}=\dot{x }_{1},\;{x }_{2}\in (-\infty , {x }_{cr}^{(1)}-H)\bigr \},\\ \partial \Omega _{{4^0}{4^1}}^{(2)}=\partial \Omega _{{4^1}{4^0}}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{{4^0}{4^1}}^{(1)}=\varphi _{{4^1}{4^0}}^{(1)}\equiv \dot{x }_{2}=0,\;\dot{x }_{2}=\dot{x }_{1},\;{x }_{2}\in ({x }_{cr}^{(1)}+H, +\infty , )\bigr \}, \end{array}\right. \end{aligned}$$
(86)
$$\begin{aligned}&\left\{ \begin{array}{l} \partial \Omega _{\tau 3}^{(i)}=\partial \Omega _{3\tau }^{(i)}=\bigl \{(x _{i},\dot{x }_{i})\;|\;\varphi _{\tau 3}^{(i)}=\varphi _{3\tau }^{(i)}\equiv \dot{x }_{i}-\dot{x }_{cr}^{(\overline{i})}=0,\;x _{i}=x _{cr}^{(\overline{i})}-(-1)^{i}H\},\\ \partial \Omega _{\tau 4}^{(i)}=\partial \Omega _{4\tau }^{(i)}=\bigl \{(x _{i},\dot{x }_{i})\;|\;\varphi _{\tau 4}^{(i)}=\varphi _{4\tau }^{(i)}\equiv \dot{x }_{i}-\dot{x }_{cr}^{(\overline{i})}=0,\;x _{i}=x _{cr}^{(\overline{i})}+(-1)^{i}H\}, \end{array}\right. \end{aligned}$$
(87)
Fig. 12
figure 12

Absolute domains and boundary with appearance of stuck for the mass \(m _{3}\)

where \(i\ne \overline{i}\in \{1,2\},\,\, \xi ,\tau \in \{1,2\}\,\,\mathrm and\,\,\theta \in \{0,1\}\). The above domains and boundaries are shown in Fig. 11a, b. The domains \(\Omega _3^{(1)}\) and \(\Omega _4^{(1)}\) represent the domains where the mass \(m _{1}\) does stick motion, which are expressed in green and blue, respectively. The domains \(\Omega _{\xi ^0}^{(2)}\) and \(\Omega _{\xi ^1}^{(2)}\) \((\xi =3,4)\) represent the domains where the mass \(m _{2}\) does stick motion, which are expressed in different shades of green and blue, respectively. The stick boundaries \(\partial \Omega _{\tau 3}^{(i)}\) and \( \partial \Omega _{\tau 4}^{(i)} \) are expressed in black dotted lines. And the stuck boundaries \(\partial \Omega _{{3^0}{3^1}}^{(2)}\) and \( \partial \Omega _{{4^0}{4^1}}^{(2)} \) for the mass \(m _{2}\) are expressed in green and blue dashed lines.

For the free motion of the mass \(m _{3}\), the absolute domains \(\Omega _1^{(3)}\) and \(\Omega _2^{(3)}\) and stuck boundary \( \partial \Omega _{12}^{(3)}\) are defined as

$$\begin{aligned}&\Omega _1^{(3)}=\bigl \{(x _{3},\dot{x }_{3})\; |\; \dot{x }_{3}>0\bigr \},\,\,\nonumber \\&\Omega _2^{(3)}=\bigl \{(x _{3},\dot{x }_{3})\; |\; \dot{x }_{3}<0\bigr \}, \end{aligned}$$
(88)
$$\begin{aligned}&\partial \Omega _{12}^{(3)}=\partial \Omega _{21}^{(3)} =\bigl \{(x _{3},\dot{x }_{3})\;|\;\varphi _{12}^{(3)} =\varphi _{21}^{(3)}\equiv \dot{x }_{3}=0\bigr \}.\nonumber \\ \end{aligned}$$
(89)

Herein, the phase plane is partitioned into two domains by a boundary, which are sketched in Fig. 12. The domains \(\Omega _1^{(3)}\) and \(\Omega _2^{(3)}\) represent the domains of free motion for the mass \(m_{3}\), which are represented by the light gray and light purple areas, respectively. The boundary \(\partial \Omega _{12}^{(3)}\) is the velocity boundary, and it is depicted by the orange dashed line.

Appendix B

Fig. 13
figure 13

Relative domains and boundaries with appearance of stick for the two masses: a mass \(m_{1}\) and b mass \(m_{2}\)

The relative domains for the motions of the masses \(m_i\;(i=1,2)\) are defined as

$$\begin{aligned}&\left\{ \begin{array}{l} \Omega _{1}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;\dot{z }_{1}>0,\;|z _{1}|<H\},\\ \Omega _2^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;\dot{z }_{1}<0,\;|z _{1}|<H\},\\ \Omega _3^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;\dot{z }_{1}=0,\;{z }_{1}=H\},\\ \Omega _4^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;\dot{z }_{1}=0,\;{z }_{1}=-H\}, \end{array}\right. \end{aligned}$$
(90)
$$\begin{aligned}&\left\{ \begin{array}{l} \Omega _{\xi ^\theta }^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;{(-1)^\xi }\dot{z }_{2}>0,\;{(-1)^\theta }\dot{z }_{2}>{(-1)^{\theta +1}}\dot{x }_{1},\;|z _{2}|<H\},\\ \Omega _{3^\theta }^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\; |\;\dot{z }_{2}=0,\;{z }_{2}=-H\},\\ \Omega _{4^\theta }^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\; |\;\dot{z }_{2}=0,\;{z }_{2}=H\}, \end{array}\right. \end{aligned}$$
(91)

and the corresponding boundaries are denoted by

$$\begin{aligned}&\left\{ \begin{array}{l} \partial \Omega _{12}^{(1)}=\partial \Omega _{21}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{12}^{(1)}=\varphi _{21}^{(1)}\equiv \dot{z }^{(1)}=0,\;|z _{1}|<H\bigr \},\\ \partial \Omega _{{1^\theta }{2^\theta }}^{(2)}=\partial \Omega _{{2^\theta }{1^\theta }}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{{1^\theta }{2^\theta }}^{(2)}=\varphi _{{2^\theta }{1^\theta }}^{(2)}\equiv \dot{z }_{2}=0,\;{(-1)^\theta }\dot{z }_{2}>{(-1)^{\theta +1}}\dot{x }_{1},\;|z _{2}|<H\},\\ \partial \Omega _{{\xi ^0}{\xi ^1}}^{(2)}=\partial \Omega _{{\xi ^1}{\xi ^0}}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{{\xi ^0}{\xi ^1}}^{(2)}=\varphi _{{\xi ^1}{\xi ^0}}^{(2)}\equiv \dot{z }_{2}=-\dot{x }_{1},\;{(-1)^\xi }\dot{z }_{2}>0,\;|z _{2}|<H\},\\ \partial \Omega _{{3^0}{3^1}}^{(2)}=\partial \Omega _{{3^1}{3^0}}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{{3^0}{3^1}}^{(2)}=\varphi _{{3^1}{3^0}}^{(2)}\equiv \dot{z }_{2}=-\dot{x }_{1},\;\dot{z }_{2}=0,\;z _{2}=-H\},\\ \partial \Omega _{{4^0}{4^1}}^{(2)}=\partial \Omega _{{4^1}{4^0}}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{{4^0}{4^1}}^{(2)}=\varphi _{{4^1}{4^0}}^{(2)}\equiv \dot{z }_{2}=-\dot{x }_{1},\;\dot{z }_{2}=0,\;z _{2}=H\}, \end{array}\right. \end{aligned}$$
(92)
$$\begin{aligned}&\left\{ \begin{array}{l} \partial \Omega _{\tau 3}^{(i)}=\partial \Omega _{3\tau }^{(i)}=\bigl \{(z _{i},\dot{z }_{i})\;|\;\varphi _{\tau 3}^{(i)}=\varphi _{3\tau }^{(i)}\equiv \dot{z }_{i}=0,\;z _{cr}^{(i)}=(-1)^{i+1}H\},\\ \partial \Omega _{\tau 4}^{(i)}=\partial \Omega _{4\tau }^{(i)}=\bigl \{(z _{i},\dot{z }_{i})\;|\;\varphi _{\tau 4}^{(i)}=\varphi _{4\tau }^{(i)}\equiv \dot{z }_{i}=0,\;z _{cr}^{(i)}=(-1)^{i}H\},\\ {}^+\!\partial \Omega _{1\infty }^{(i)}=\bigl \{(z _{i},\dot{z }_{i})\;|\;{}^+\!\varphi _{1\infty }^{(i)}\equiv z _{i}+(-1)^{i}H=0,\;(-1)^{i}\dot{z }_{i}<0\},\\ {}^+\!\partial \Omega _{2\infty }^{(i)}=\bigl \{(z _{i},\dot{z }_{i})\;|\;{}^+\!\varphi _{2\infty }^{(i)}\equiv z _{i}+(-1)^{i}H=0,\;(-1)^{i}\dot{z }_{i}>0\},\\ {}^-\!\partial \Omega _{1\infty }^{(i)}=\bigl \{(z _{i},\dot{z }_{i})\;|\;{}^-\!\varphi _{1\infty }^{(i)}\equiv z _{i}-(-1)^{i}H=0,\;(-1)^{i}\dot{z }_{i}<0\},\\ {}^-\!\partial \Omega _{2\infty }^{(i)}=\bigl \{(z _{i},\dot{z }_{i})\;|\;{}^-\!\varphi _{2\infty }^{(i)}\equiv z _{i}-(-1)^{i}H=0,\;(-1)^{i}\dot{z }_{i}>0\}, \end{array}\right. \end{aligned}$$
(93)

where \(i\ne \overline{i}\in \{1,2\},\,\xi \in \{1,2\},\,\theta \in \{0,1\}\,\,\mathrm{and}\,\,\tau =1,2\). The relative domains and boundaries are shown in Fig. 13a, b. The stick domains and stick boundaries in relative coordinates become the blue points.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Fan, J. Discontinuous dynamics for a class of 3-DOF friction and collision system with symmetric bilateral rigid constraints. Nonlinear Dyn 106, 1739–1768 (2021). https://doi.org/10.1007/s11071-021-06924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06924-z

Keywords

Navigation