Skip to main content
Log in

Operational control based on environmental detector for floating LNG connection system during side-by-side offloading operation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 25 October 2023

This article has been updated

Abstract

This paper addresses the dynamic positioning problem for Liquefied Natural Gas (LNG) carrier with unknown shielding effect via a sea state detector and robust control design. First, to deal with the shielding effect existing between LNG facility and LNG carrier, sea state detector is developed to estimate the variation of wave force on the LNG carrier. In addition, the wind drag coefficients can be obtained adaptively to achieve feedforward control. Then, to guarantee a safe operation, a robust constrained control with prescribed performance is proposed considering actuator dynamic. Further, once a large wave force is identified in the detector, Neural Network compensator will be activated in the controller. Lyapunov analysis is conducted to ensure the boundedness of all the closed-loop states. Finally, the feasibility of the theoretical results is demonstrated by simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Yeo, C.T., Bhandari, J., Abbassi, R., et al.: Dynamic risk analysis of offloading process in floating liquefied natural gas platform using Bayesian Network. J. Loss Prevent. Process Ind. 41, 259–269 (2016)

    Article  Google Scholar 

  2. Jin, Y., Chai, S., Duffy, J., et al.: URANS predictions on the hydrodynamic interaction of a conceptual FLNG-LNG offloading system in regular waves. Ocean Eng. 153, 363–386 (2018)

    Article  Google Scholar 

  3. Zhao, W., Milne, I.A., Efthymiou, M., et al.: Current practice and research directions in hydrodynamics for FLNG-side-by-side offloading. Ocean Eng. 158, 99–110 (2018)

    Article  Google Scholar 

  4. How, B.V.E., Ge, S.S., Choo, Y.S.: Control of coupled vessel, crane, cable, and payload dynamics for subsea installation operations. IEEE Trans. Control Syst. Technol. 19(1), 208–220 (2010)

    Article  Google Scholar 

  5. Wang, D., Ge, S.S., Fu, M., et al.: Bioinspired neurodynamics based formation control for unmanned surface vehicles with line-of-sight range and angle constraints. Neurocomputing (2020)

  6. Allgöwer, F., Alex, Z.: Nonlinear Model Predictive Control, vol. 26. Birkhäuser, Basel (2012)

    Google Scholar 

  7. Mayne, D.Q., Rawlings, J.B., Rao, C.V., et al.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, P., Zhang, X., Zhu, J.: Integrated missile guidance and control: a novel explicit reference governor using a disturbance observer. IEEE Trans. Ind. Electron. 66(7), 5487–5496 (2018)

    Article  Google Scholar 

  9. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Psomopoulou, E., Theodorakopoulos, A., Doulgeri, Z., et al.: Prescribed performance tracking of a variable stiffness actuated robot. IEEE Trans. Control Syst. Technol. 23(5), 1914–1926 (2015)

    Article  Google Scholar 

  11. Kostarigka, A.K., Doulgeri, Z., Rovithakis, G.A.: Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity. Automatica 49(5), 1137–1147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Na, J., Chen, Q., Ren, X., et al.: Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans. Ind. Electron. 61(1), 486–494 (2013)

    Article  Google Scholar 

  13. Hu, Q., Shao, X., Guo, L.: Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance. IEEE/ASME Trans. Mechatron. 23(1), 331–341 (2017)

    Article  Google Scholar 

  14. Meng, W., Yang, Q., Sun, Y.: Guaranteed performance control of DFIG variable-speed wind turbines. IEEE Trans. Control Syst. Technol. 24(6), 2215–2223 (2016)

    Article  Google Scholar 

  15. Zheng, Z., Feroskhan, M.: Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances. IEEE/ASME Trans. Mechatron. 22(6), 2564–2575 (2017)

    Article  Google Scholar 

  16. Luo, Y., Serrani, A., Yurkovich, S., et al.: Model predictive dynamic control allocation with actuator dynamics. In: Proceedings of the 2004 American Control Conference. IEEE, vol. 2, pp. 1695–1700 (2004)

  17. Veksler, A., Johansen, T.A., Borrelli, F., et al.: Dynamic positioning with model predictive control. IEEE Trans. Control Syst. Technol. 24(4), 1340–1353 (2016)

    Article  Google Scholar 

  18. Li, J., Du, J., Hu, X.: Robust adaptive prescribed performance control for dynamic positioning of ships under unknown disturbances and input constraints. Ocean Eng. 206, 107254 (2020)

    Article  Google Scholar 

  19. Saelid, S., Jenssen, N., Balchen, J.: Design and analysis of a dynamic positioning system based on Kalman filtering and optimal control. IEEE Trans. Autom. Control 28(3), 331–339 (1983)

    Article  Google Scholar 

  20. Al-Jodah, A., Shirinzadeh, B., Ghafarian, M., et al.: Modeling and a cross-coupling compensation control methodology of a large range 3-DOF micropositioner with low parasitic motions[J]. Mechan. Mach. Theory 162, 104334 (2021)

    Article  Google Scholar 

  21. Ghafarian, M., Shirinzadeh, B., Al-Jodah, A., et al.: Adaptive fuzzy sliding mode control for high-precision motion tracking of a multi-DOF micro/nano manipulator[J]. IEEE Robot. Autom. Lett. 5(3), 4313–4320 (2020)

    Article  Google Scholar 

  22. Loueipour, M., Keshmiri, M., Danesh, M., et al.: Wave filtering and state estimation in dynamic positioning of marine vessels using position measurement. IEEE Trans. Instrum. Meas. 64(12), 3253–3261 (2015)

    Article  Google Scholar 

  23. Fossen, T.I., Strand, J.P.: Nonlinear passive weather optimal positioning control (WOPC) system for ships and rigs: experimental results. Automatica 37(5), 701–715 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhao, Z., He, W., Ge, S.S.: Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Trans. Control Syst. Technol. 22(4), 1536–1543 (2013)

    Google Scholar 

  25. Chen, M., Ge, S.S., How, B.V.E., et al.: Robust adaptive position mooring control for marine vessels. IEEE Trans. Control Syst. Technol. 21(2), 395–409 (2012)

    Article  Google Scholar 

  26. Senthilkumar, T., Balasubramaniam, P.: Delay-dependent robust stabilization and H control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays[J]. J. Optim. Theory Appl. 151(1), 100–120 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Senthilkumar T, Balasubramaniam P.: Non-fragile robust stabilization and \(H_\infty \) control for uncertain stochastic time delay systems with Markovian jump parameters and nonlinear disturbances. Int.l J. Adapt Control Signal Process 28(3–5): 464–478 (2014)

  28. Hwang, M.C., Hu, X.: A robust position/force learning controller of manipulators via nonlinear h/spl infin/control and neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2, 310–321 (2000)

    Article  Google Scholar 

  29. Wen, G., Ge, S.S., Tu, F., et al.: Artificial potential-based adaptive \({{H} _ {\infty }} \) synchronized tracking control for accommodation vessel. IEEE Trans. Ind. Electron. 64(7), 5640–5647 (2017)

    Article  Google Scholar 

  30. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, New York (2011)

    Book  Google Scholar 

  31. Fossen, T.I.: Guidance and Control of Ocean Vehicles, vol. 199. Wiley, New York (1994)

    Google Scholar 

  32. Kalman, R.E.: Lyapunov functions for the problem of Lure in automatic control. Proc. Natl. Acad. Sci. U.S.A. 49(2), 201 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bechlioulis, C.P., Rovithakis, G.A.: Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45(2), 532–538 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fossen, T.I., Berge, S.P.: Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics. In: Proceedings of the 36th IEEE Conference on Decision and Control. IEEE, vol. 5, pp. 4237–4242 (1997)

  35. Chen, M., Liu, X., Wang, H.: Adaptive robust fault-tolerant control for nonlinear systems with prescribed performance. Nonlinear Dyn. 81(4), 1727–1739 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ross, A., Perez, T., Fossen, T.I.: Clarification of the low-frequency modelling concept for marine craft. In: Proceedings of the 7th IFAC Conference on Manoeuvring and Control of Marine Craft. International Federation for Automatic Control, Portugal, pp. 1–6. (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The parameterized wind coefficients

See Table 1 and Fig. 11.

Table 1 The wind coefficients

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Zhang, Y., Ge, S.S. et al. Operational control based on environmental detector for floating LNG connection system during side-by-side offloading operation. Nonlinear Dyn 106, 2293–2307 (2021). https://doi.org/10.1007/s11071-021-06877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06877-3

Keywords

Navigation