Skip to main content
Log in

Construction of higher-order smooth positons and breather positons via Hirota’s bilinear method

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the Hirota’s bilinear method, a more classic limit technique is perfected to obtain second-order smooth positons. Immediately afterwards, we propose an extremely ingenious limit approach in which higher-order smooth positons and breather positons can be quickly derived from N-soliton solution. Under this ingenious technique, the smooth positons and breather positons of the modified Korteweg–de Vries system are quickly and easily derived. Compared with the generalized Darboux transformation, the approach mentioned in this paper has the following advantages and disadvantages: the advantage is that it is simple and fast and the disadvantage is that this method cannot get a concise general mathematical expression of nth-order smooth positons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

All data generated or analysed during this study are included in this article.

References

  1. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539 (1970)

    MATH  Google Scholar 

  2. Hirota, R.: Exact solution of the korteweg-de vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

    Article  Google Scholar 

  3. Akhmediev, N.N., Ankiewicz, A.: Solitons Nonlinear Pulses and beams. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  4. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge, UK (2004)

    Book  Google Scholar 

  5. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496 (1979)

    Article  MathSciNet  Google Scholar 

  6. Guo, B.L., Ling, L.M., Liu, Q.P.: High order Solutions and Generalized Darboux transformation of Derivative Schrödinger Equations. Stud. Appl. Math. 130, 317 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bilman, D., Ling, L.M., Miller, P.D.: Extreme superposition: rogue waves of infinite order and the painlevé-III Hierarchy. Duke Math. J. 169, 671 (2020)

    Article  MathSciNet  Google Scholar 

  8. Rao, J.G., Cheng, Y., Porsezian, K., et al.: PT-symmetric nonlocal Davey- Stewartson I equation: soliton solutions with nonzero background. Physica D 401, 132180 (2020)

    Article  MathSciNet  Google Scholar 

  9. Zhang, D.J., Zhao, S.L., Sun, Y.Y., et al.: Solutions to the modified Korteweg-de Vries equation. Rev. Math. Phys. 26, 1430006 (2014)

    Article  MathSciNet  Google Scholar 

  10. Guo, L.J., He, J.S., Wang, L.H., et al.: Two-dimensional rogue waves on zero background in a Benney-Roskes model. Phys. Rev. Res. 2, 033376 (2020)

    Article  Google Scholar 

  11. Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205 (1992)

    Article  MathSciNet  Google Scholar 

  12. Matveev, V.B.: Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166, 209 (1992)

    Article  MathSciNet  Google Scholar 

  13. Liu, W., Zhang, Y.S., He, J.S.: Dynamics of the smooth positons of the complex modified KdV equation. Wave Random Compl. 28, 203 (2018)

    Article  MathSciNet  Google Scholar 

  14. Xing, Q.X., Wu, Z.W., Mihalache, D., et al.: Smooth positon solutions of the focusing modified Korteweg-de Vries equation. Nonlin. Dyn. 89, 2299 (2017)

    Article  MathSciNet  Google Scholar 

  15. Wang, L.H., He, J.S., Xu, H., et al.: Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95, 042217 (2017)

    Article  MathSciNet  Google Scholar 

  16. Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 51, 2029 (1982)

    Article  MathSciNet  Google Scholar 

  17. Wu, Q.L., Zhang, H.Q., Hang, C.: Breather, soliton-breather interaction and double-pole solutions of the fifth-order modified KdV equation. Appl. Math. Lett. 120, 107256 (2021)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Z., Yang, X.Y., Li, B.: Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation. Nonlin. Dyn. 100, 1551 (2020)

    Article  Google Scholar 

  19. Zhang, Z., Yang, X.Y., Li, B.: Soliton molecules and novel smooth positons for the complex modified KdV equation. Appl. Math. Lett. 103, 106168 (2020)

    Article  MathSciNet  Google Scholar 

  20. Hirota, R.: Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons. J. Phys. Soc. Jpn. 33, 1456 (1972)

    Article  Google Scholar 

  21. Chen, D.Y., Zhang, D.J., Deng, S.F.: The novel multi-soliton solutions of the MKdV-Sine gordon equations. J. Phys. Soc. Jpn. 71, 658 (2002)

    Article  MathSciNet  Google Scholar 

  22. Takahashi, M., Konno, K.: N double pole solution for the modified Korteweg-de Vries equation by the Hirota’s method. J. Phys. Soc. Jpn. 58, 3505 (1989)

    Article  MathSciNet  Google Scholar 

  23. Xing, Q.X., Wang, L.H., Mihalache, D., et al.: Construction of rational solutions of the real modified Korteweg-de Vries equation from its periodic solutions. Chaos 27, 053102 (2017)

    Article  MathSciNet  Google Scholar 

  24. Demontis, F.: Exact solutions of the modified Korteweg-De Vries equation. Theor. Math. Phys. 168, 886 (2011)

    Article  MathSciNet  Google Scholar 

  25. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31, 1955 (2018)

    Article  MathSciNet  Google Scholar 

  26. Deng, S.F.: The novel multisoliton solutions for some soliton equations. D.Sc. thesis, Shanghai University (2004) (in Chinese)

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of Guangdong Province of China (No. 2021A1515012214), the Science and Technology Program of Guangzhou (No. 2019050001), National Natural Science Foundation of China (Nos. 11775121) and K.C.Wong Magna Fund in Ningbo University. The authors would like to express their sincere thanks to Prof. Dajun Zhang for his guidance and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, B., Chen, J. et al. Construction of higher-order smooth positons and breather positons via Hirota’s bilinear method. Nonlinear Dyn 105, 2611–2618 (2021). https://doi.org/10.1007/s11071-021-06751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06751-2

Keywords

Navigation