Skip to main content
Log in

Nonlinear forced vibration analysis of the composite shaft-disk system combined the reduced-order model with the IHB method

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the internal resonance phenomena of a composite shaft-disk system with multi-degrees-of-freedom are analyzed. The force caused by the unbalanced mass of the disk is considered as an external excitation force. The shaft is simply supported. Shear deformation and gyroscopic effects are considered. The strain–displacement relationship of the shaft element is expressed using the Timoshenko beam theory. Each node has 5 degrees of freedom. SHBT (simplified homogenized beam theory) is applied to calculate the stiffness of the composite shaft. WQEM (weak form quadrature element method) is used to construct the element matrices, and the system matrices are established using the element matrix assembly rule of the FEM (finite element method). The reduced-order model is applied to reduce the calculation time. IHB (incremental harmonic balance) method is utilized to solve the nonlinear equations of motion of the composite shaft-disk system. The nonlinear vibration characteristics of the Jeffcott rotor are analyzed using the proposed method and compared with the results of previous researches, and the results are very similar. Based on these considerations, the nonlinear vibration phenomena of the composite shaft-disk system with multi-degrees-of-freedom are considered at the several resonance points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Benamar, R., Bennouna, M.M.K.: The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures part I: simply supported and clamped-clamped beams. J. Sound Vib. 149(2), 179–195 (1991)

    Article  Google Scholar 

  2. Singh, S.P., Gupta, K.: Dynamic analysis of composite rotors. Int. J. Rotating Mach. 2(3), 179–186 (1996)

    Article  Google Scholar 

  3. Gubran, H.B.H., Gupta, K.: The effect of stacking sequence and coupling mechanisms on the natural frequencies of composite shafts. J. Sound Vib. 282, 231–248 (2005)

    Article  Google Scholar 

  4. Sino, R., Baranger, T.N., Chatelet, E., Jacquet, G.: Dynamic analysis of a rotating composite shaft. Compos. Sci. Technol. 68, 337–345 (2008)

    Article  Google Scholar 

  5. Ri, K., Choe, K., Han, P., Wang, Q.: The effects of coupling mechanisms on the dynamic analysis of composite shaft. Compos. Struct. 224, 111040 (2019)

    Article  Google Scholar 

  6. Singh, S.P., Gupta, K.: Composite shaft rotordynamic analysis using a layerwise theory. J. Sound Vib. 191(5), 739–756 (1996)

    Article  Google Scholar 

  7. Ishida, Y., Nagasaka, I., Inoue, T., Lee, S.: Forced oscillations of a vertical continuous rotor with geometric nonlinearity. Nonlinear Dyn. 11, 107–120 (1996)

    Article  Google Scholar 

  8. Ishida, Y., Inoue, T.: Internal resonance phenomena of the Jeffcott rotor with nonlinear spring characteristics. ASME 126, 476–484 (2004)

    Google Scholar 

  9. Ishida, Y., Inoue, T.: Internal resonance phenomena of an asymmetrical rotating shaft. J. Vib. Control 11(9), 1173–1193 (2005)

    Article  Google Scholar 

  10. Inoue, T., Ishida, Y.: Chaotic vibration and internal resonance phenomena in rotor systems. ASME 128, 156–169 (2006)

    Google Scholar 

  11. Khadem, S.E., Shahgholi, M., Hosseini, S.A.A.: Primary resonances of a nonlinear in-extensional rotating shaft. Mech. Mach. Theory 45, 1067–1081 (2010)

    Article  Google Scholar 

  12. Hosseini, S.A.A., Zamanian, M.: Multiple scales solution for free vibrations of a rotating shaft with stretching nonlinearity. Sci Iran 20(1), 131–140 (2013)

    Article  Google Scholar 

  13. Hosseini, S.A.A., Zamanian, M., Shams, Sh., Shooshtari, A.: Vibration analysis of geometrically nonlinear spinning beams. Mech. Mach. Theory 78, 15–35 (2014)

    Article  Google Scholar 

  14. Zhang, C., Ren, Y., Ji, S.: Research on lateral nonlinear vibration behavior of composite shaft-disk rotor system. Appl. Mech. Mater. 875, 149–161 (2018)

    Article  Google Scholar 

  15. Nezhad, H.S.A., Hosseini, S.A.A., Tiaki, M.M.: Combination resonances of spinning composite shafts considering geometric nonlinearity. J. Braz. Soc. Mech. Sci. 41(11), 515 (2019)

    Article  Google Scholar 

  16. Shaban, A.N.H., Hosseini, S.A.A.: Flexural–flexural–extensional–torsional vibration analysis of composite spinning shafts with geometrical nonlinearity. Nonlinear Dyn. 89, 651–690 (2017)

    Article  Google Scholar 

  17. Saeed, N.A.: On vibration behavior and motion bifurcation of a nonlinear asymmetric rotating shaft. Arch. Appl. Mech. 89(9), 1899–1921 (2019)

    Article  Google Scholar 

  18. Wang, X., Yuan, Z., Jin, C.: Weak form quadrature element method and its applications in science and engineering: a state-of-the-art review. Appl. Mech. Rev. 69, 030801 (2017)

    Article  Google Scholar 

  19. Ahmad, M., Mohammad, H.K.: Nonlinear dynamic analysis of an axially loaded rotating timoshenko beam with extensional condition included subjected to general type of force moving along the beam length. J. Vib. Control 19(16), 2448–2458 (2012)

    MathSciNet  Google Scholar 

  20. Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering. Wiley, New York (1998)

    Google Scholar 

  21. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273–286 (1990)

    Article  Google Scholar 

  22. Ri, K., Han, P., Kim, I., Kim, W., Cha, H.: Nonlinear forced vibration analysis of composite beam combined with DQFEM and IHB. AIP Adv. 10, 885112 (2020)

    Article  Google Scholar 

  23. Saeed, N.A.: On the steady-state forward and backward whirling motion of asymmetric nonlinear rotor system. Eur. J. Mech. A-solid. 80, 103878 (2019)

    Article  MathSciNet  Google Scholar 

  24. Saeed, N.A., Awwad, E.M., El-Meligy, M.A., Nasr, E.A.: Sensitivity analysis and vibration control of asymmetric nonlinear rotating shaft system utilizing 4-pole AMBs as an actuator. Eur. J. Mech. A-solid. 86, 104145 (2020)

    Article  MathSciNet  Google Scholar 

  25. Saeed, N.A., Eissa, M.: Bifurcation Analysis of a Transversely Cracked Nonlinear Jeffcott Rotor System at Different Resonance Cases. Int. J. Acoust. Vib. 24(2), 284–302 (2019)

    Article  Google Scholar 

  26. Eissa, M., Kamel, M., Saeed, N.A., El-Ganaini, W.A., El-Gohary, H.A.: Time-delayed positive-position and velocity feedback controller to suppress the lateral vibrations in nonlinear Jeffcott-rotor system. Minufiya J. of Electronic Engineering Research 27(1), 1–16 (2017)

    Google Scholar 

  27. Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems. Springer (2019)

  28. Ri, K., Han, P., Kim, I., Kim, W., Cha, H.: Stability analysis of composite shafts considering internal damping and coupling Effect. Int. J. Struct. Stab. Dyn. 20(11), 1–25 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The every element matrix in Eq. (31) is expressed as follows.

The mass matrix is as follows.

$$ {\mathbf{M}}^{e} = {\mathbf{M}}_{d}^{e} + {\mathbf{M}}_{s}^{e} $$
(60)

Here, \({\mathbf{M}}_{d}^{e}\) is the mass matrix of the disk and expressed as follows.

$$ {\mathbf{M}}_{d}^{e} = \left[ {\begin{array}{*{20}c} {\tilde{M}_{di} } & {0} & {0} & {0} & {0} \\ {0} & {\tilde{M}_{di} } & {0} & {0} & {0} \\ {0} & {0} & {\tilde{M}_{di} } & {0} & {0} \\ {0} & {0} & {0} & {\tilde{I}_{di} } & {0} \\ {0} & {0} & {0} & {0} & {\tilde{I}_{di} } \\ \end{array} } \right] $$
(61)

\({\mathbf{M}}_{s}^{e}\) is the mass matrix of shaft element and expressed as follows.

$$ {\mathbf{M}}_{s}^{e} = \left[ {\begin{array}{*{20}c} {{\mathbf{C}}^{\left( 1 \right)} } & {0} & {0} & {0} & {0} \\ {0} & {{\mathbf{C}}^{\left( 1 \right)} } & {0} & {0} & {0} \\ {0} & {0} & {{\mathbf{C}}^{\left( 1 \right)} } & {0} & {0} \\ {0} & {0} & {0} & {\tilde{I}_{1} {\mathbf{C}}^{\left( 1 \right)} } & {0} \\ {0} & {0} & {0} & {0} & {\tilde{I}_{1} {\mathbf{C}}^{\left( 1 \right)} } \\ \end{array} } \right] $$
(62)

The gyroscopic matrix is as follows.

$$ {\mathbf{G}}^{e} = {\mathbf{G}}_{d}^{e} + {\mathbf{G}}_{s}^{e} $$
(63)

Here, \({\mathbf{G}}_{d}^{e}\) is the gyroscopic matrix of the disk and expressed as follows.

$$ {\mathbf{G}}_{d}^{e} = \left[ {\begin{array}{*{20}c} {0} & {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} & { - \tilde{I}_{dpi} } \\ {0} & {0} & {0} & {\tilde{I}_{dpi} } & {0} \\ \end{array} } \right] $$
(64)

\({\mathbf{G}}_{s}^{e}\) is the gyroscopic matrix of shaft element and expressed as follows.

$$ {\mathbf{G}}_{s}^{e} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & { - \tilde{I}_{2} {\mathbf{C}}^{\left( 1 \right)} } \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\tilde{I}_{2} {\mathbf{C}}^{\left( 1 \right)} } & {\mathbf{0}} \\ \end{array} } \right] $$
(65)

The stiffness matrix of shaft element is as follows.

$$ {\mathbf{K}}_{s}^{e} = \left[ {\begin{array}{*{20}c} {\tilde{E}_{{eqs}} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} {\mathbf{A}}^{{\left( 1 \right)}} } & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\tilde{G}_{{eq}} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} {\mathbf{A}}^{{\left( 1 \right)}} } & {\mathbf{0}} & {\mathbf{0}} & { - \tilde{G}_{{eq}} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} {\mathbf{I}}} \\ {\mathbf{0}} & {\mathbf{0}} & {\tilde{G}_{{eq}} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} {\mathbf{A}}^{{\left( 1 \right)}} } & {\tilde{G}_{{eq}} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} {\mathbf{I}}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\tilde{G}_{{eq}} {\mathbf{I}}^{T} {\mathbf{C}}^{{\left( 1 \right)}} {\mathbf{A}}^{{\left( 1 \right)}} } & {\tilde{E}_{{eq}} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} {\mathbf{A}}^{{\left( 1 \right)}} } & {\mathbf{0}} \\ {\mathbf{0}} & { - \tilde{G}_{{eq}} {\mathbf{I}}^{T} {\mathbf{C}}^{{\left( 1 \right)}} {\mathbf{A}}^{{\left( 1 \right)}} } & {\mathbf{0}} & {\mathbf{0}} & {\tilde{E}_{{eq}} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} {\mathbf{A}}^{{\left( 1 \right)}} } \\ \end{array} } \right] $$
(66)

The nonlinear stiffness matrix of shaft element is as follows.

$$ {\mathbf{K}}_{3}^{e} {\text{ = }}\frac{{\tilde{E}_{{eqs}} }}{{\text{2}}}\left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\psi {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} \left( {{\mathbf{A}}^{{\left( 1 \right)}} {\mathbf{\tilde{v}}}} \right){\mathbf{A}}^{{\left( 1 \right)}} } & {\psi {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} \left( {{\mathbf{A}}^{{\left( 1 \right)}} {\mathbf{\tilde{w}}}} \right){\mathbf{A}}^{{\left( 1 \right)}} } & {\mathbf{0}} & {\mathbf{0}} \\ {2\psi {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} \left( {{\mathbf{A}}^{{\left( 1 \right)}} {\mathbf{\tilde{v}}}} \right){\mathbf{A}}^{{\left( 1 \right)}} } & {\psi ^{2} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} \left( {{\mathbf{A}}^{{\left( 1 \right)}} {\mathbf{\tilde{v}}}} \right)^{2} {\mathbf{A}}^{{\left( 1 \right)}} } & {\psi ^{2} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} \left( {{\mathbf{A}}^{{\left( 1 \right)}} {\mathbf{\tilde{v}}}} \right)\left( {{\mathbf{A}}^{{\left( 1 \right)}} {\mathbf{\tilde{w}}}} \right){\mathbf{A}}^{{\left( 1 \right)}} } & {\mathbf{0}} & {\mathbf{0}} \\ {2\psi {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} \left( {{\mathbf{A}}^{{\left( 1 \right)}} {\mathbf{\tilde{v}}}} \right){\mathbf{A}}^{{\left( 1 \right)}} } & {\psi ^{2} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} \left( {{\mathbf{A}}^{{\left( 1 \right)}} {\mathbf{\tilde{w}}}} \right)\left( {{\mathbf{A}}^{{\left( 1 \right)}} {\mathbf{\tilde{v}}}} \right){\mathbf{A}}^{{\left( 1 \right)}} } & {\psi ^{2} {\mathbf{A}}^{{\left( 1 \right)T}} {\mathbf{C}}^{{\left( 1 \right)}} \left( {{\mathbf{A}}^{{\left( 1 \right)}} {\mathbf{\tilde{w}}}} \right)^{2} {\mathbf{A}}^{{\left( 1 \right)}} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right] $$
(67)

Here, 0 and I are zero matrix and identity matrix, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ri, K., Han, W., Pak, C. et al. Nonlinear forced vibration analysis of the composite shaft-disk system combined the reduced-order model with the IHB method. Nonlinear Dyn 104, 3347–3364 (2021). https://doi.org/10.1007/s11071-021-06510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06510-3

Keywords

Navigation