Skip to main content
Log in

Riemann–Hilbert approach and nonlinear dynamics of the coupled higher-order nonlinear Schrödinger equation in the birefringent or two-mode fiber

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The multi-soliton solutions and breathers to the coupled higher-order nonlinear Schrödinger (CH-NLS) equation are derived in this work via the Riemann–Hilbert approach. Firstly, the spectral structure of the CH-NLS equation is investigated and then a matrix Riemann–Hilbert problem on the real axis is strictly formulated. Secondly, by solving the special Riemann–Hilbert problem with no reflection where a jump matrix is taken to be the identity matrix, the formula of N-soliton solutions can be computed. Thirdly, we prove that the higher-order linear and nonlinear term r has important impact on the velocity, phase, period and wavewidth of wave dynamics. Besides, the localized waves characteristics together with collision dynamic behaviors of these explicit soliton solutions and breathers are shown graphically and discussed in detail. Interestingly, three solitons display different dynamics which demonstrate amplitudes of the right-direction waves gradually become larger during the propagation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    Article  Google Scholar 

  2. Xu, G.Q., Wazwaz, A.M.: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dyn. 101, 581–595 (2020)

    Article  Google Scholar 

  3. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Article  Google Scholar 

  4. Wazwaz, A.M., Xu, G.Q.: Kadomtsev–Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Article  Google Scholar 

  5. Xu, L., Wang, D.S., Wen, X.Y., Jiang, Y.L.: Exotic localized vector waves in a two-component nonlinear wave system. J. Nonlinear Sci. 30, 537–564 (2020)

    Article  MathSciNet  Google Scholar 

  6. Liu, W.J., Zhang, Y.J., Wazwaz, A.M., Zhou, Q.: Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber. Appl. Math. Comput. 361, 325–331 (2019)

    Article  MathSciNet  Google Scholar 

  7. Savescu, M., Khan, K.R., Naruka, P., Jafari, H., Moraru, L., Biswas, A.: Optical solitons in photonic nano waveguides with an improved nonlinear Schrödinger’s equation. J. Comput. Theor. Nanosci. 10, 1182–1191 (2013)

    Article  Google Scholar 

  8. Topkara, E., Milovic, D., Sarma, A.K., Zerrad, E., Biswas, A.: Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion with time dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 15, 2320–2330 (2010)

    Article  MathSciNet  Google Scholar 

  9. Jia, T.T., Gao, Y.T., Feng, Y.J., Hu, L., Su, J.J., Li, L.Q., Ding, C.C.: On the quintic time-dependent coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics. Nonlinear Dyn. 96, 229–241 (2019)

    Article  Google Scholar 

  10. Akhmediev, N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)

    Article  Google Scholar 

  11. Yang, J.W., Gao, Y.T., Feng, Y.J., Su, C.Q.: Solitons and dromion-like structures in an inhomogeneous optical fiber. Nonlinear Dyn. 87, 851–862 (2017)

    Article  Google Scholar 

  12. Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  13. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S.: Rogue waves emerging from the resonant interaction of three waves. Phys. Rev. Lett. 111, 114101 (2013)

    Article  Google Scholar 

  14. Jia, S.L., Gao, Y.T., Zhao, C., Lan, Z.Z., Feng, Y.J.: Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber. Eur. Phys. J. Plus 132, 34 (2017)

    Article  Google Scholar 

  15. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)

    Article  Google Scholar 

  16. Vinoj, M.N., Kuriakose, V.C.: Multisoliton solutions and integrability aspects of coupled higher-order nonlinear Schrödinger equations. Phys. Rev. E 62, 8719–8725 (2000)

    Article  MathSciNet  Google Scholar 

  17. Liu, D.Y., Tian, B., Xie, X.Y.: Bound-state solutions, Lax pair and conservation laws for the coupled higher-order nonlinear Schrodinger equations in the birefringent or two-mode fiber. Mod. Phys. Lett. B 31, 1750067 (2017)

    Article  MathSciNet  Google Scholar 

  18. Sun, W.R., Liu, D.Y., Xie, X.Y.: Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers. Chaos 27, 043114 (2017)

    Article  Google Scholar 

  19. Xu, T., He, G.L.: Higher-order interactional solutions and rogue wave pairs for the coupled Lakshmanan–Porsezian–Daniel equations. Nonlinear Dyn. 98, 1731–1744 (2019)

    Article  Google Scholar 

  20. Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  21. Wang, X.B., Han, B.: Application of the Riemann–Hilbert method to the vector modified Korteweg–de Vries equation. Nonlinear Dyn. 99, 1363–1377 (2020)

    Article  Google Scholar 

  22. Wu, J.P.: Integrability aspects and multi-soliton solutions of a new coupled Gerdjikov–Ivanov derivative nonlinear Schrödinger equation. Nonlinear Dyn. 96, 789–800 (2019)

    Article  Google Scholar 

  23. Shi, X.J., Li, J., Wu, C.F.: Dynamics of soliton solutions of the nonlocal Kundu-nonlinear Schrödinger equation. Chaos 29, 023120 (2019)

    Article  MathSciNet  Google Scholar 

  24. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    MATH  Google Scholar 

  25. Yang, J.K.: General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. Phys. Lett. A 383, 328 (2019)

    Article  MathSciNet  Google Scholar 

  26. Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equations and its soliton solutions. Phys. Rev. E 98, 042202 (2018)

    Article  MathSciNet  Google Scholar 

  27. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  28. Xu, J., Fan, E.G.: Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: without solitons. J. Differ. Equ. 259, 1098–1148 (2015)

    Article  MathSciNet  Google Scholar 

  29. Wang, D.S., Guo, B.L., Wang, X.L.: Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions. J. Differ. Equ. 266, 5209–5253 (2019)

    Article  MathSciNet  Google Scholar 

  30. Kang, Z.Z., Xia, T.C.: Construction of multi-soliton solutions of the \(N\)-coupled Hirota equations in an optical fiber. Chin. Phys. Lett. 36, 110201 (2019)

    Article  Google Scholar 

  31. Guo, B.L., Ling, L.M.: Riemann–Hilbert approach and \(N\)-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys. 53, 073506 (2012)

    Article  MathSciNet  Google Scholar 

  32. Wang, D.S., Yin, S.J., Ye, T., Liu, Y.F.: Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects. Appl. Math. Comput. 229, 296–309 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Wu, J.P., Geng, X.G.: Riemann–Hilbert approach and \(N\)-soliton solutions for a generalized Sasa–Satsuma equation. Wave Motion 60, 62–72 (2016)

    Article  MathSciNet  Google Scholar 

  34. Ma, W.X.: Application of the Riemann–Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. Real World Appl. 47, 1–17 (2019)

    Article  MathSciNet  Google Scholar 

  35. Liu, W.H., Liu, Y., Zhang, Y.F., Shi, D.D.: Riemann–Hilbert approach for multi-soliton solutions of a fourth-order nonlinear Schrödinger equation. Mod. Phys. Lett. B 33, 1950416 (2019)

    Article  Google Scholar 

  36. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

    Article  Google Scholar 

  37. Ma, X., Xia, T.C.: Riemann–Hilbert approach and \(N\)-soliton solutions for the generalized nonlinear Schrödinger equation. Phys. Scr. 94, 095203 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Yan Zhang for helpful advices during the writing of this paper. The authors also would like to express their sincere thanks to the anonymous editor and reviewers for their valuable comments on this paper. The work is supported by the National Natural Science Foundation of China (No. 12026245, 11671095), the Natural Science Foundation of Henan (No. 202300410524) and the Science and Technique Project of Henan (No. 212102310397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Yu Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, HY., Fan, EG. & Guo, HD. Riemann–Hilbert approach and nonlinear dynamics of the coupled higher-order nonlinear Schrödinger equation in the birefringent or two-mode fiber. Nonlinear Dyn 104, 649–660 (2021). https://doi.org/10.1007/s11071-021-06286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06286-6

Keywords

Navigation