Skip to main content
Log in

Solitons and dromion-like structures in an inhomogeneous optical fiber

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a generalized higher-order variable-coefficient nonlinear Schrödinger equation is studied, which describes the propagation of subpicosecond or femtosecond pulses in an inhomogeneous optical fiber. We derive a set of the integrable constraints on the variable coefficients. Under those constraints, via the symbolic computation and modified Hirota method, bilinear equations, one-, two-,three-soliton solutions and dromion-like structures are obtained. Properties and interactions for the solitons are studied: (a) effects on the solitons resulting from the wave number k, third-order dispersion \(\delta _1(z)\), group velocity dispersion \(\alpha (z)\), gain/loss \(\varGamma _2(z)\) and group-velocity-related \(\gamma (z)\) are discussed analytically and graphically where z is the normalized propagation distance along the fiber; (b) bound state with different values of \(\alpha (z)\), \(\delta _1(z)\), \(\gamma (z)\) and \(\varGamma _2(z)\) are presented where some periodic or quasiperiodic formulae are derived. Interactions between the two solitons and between the bound states and a single soliton are, respectively, discussed; and (c) single, double and triple dromion-like structures with different values of \(\alpha (z)\), \(\delta _1(z)\), \(\gamma (z)\) are also presented, distortions of which are found to be determined by those variable coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83, 591–596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wazwaz, A.M., El-Tantawy, S.A.: A new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 84, 1107–1112 (2016)

    Article  MathSciNet  Google Scholar 

  4. Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen, Y.J., Yu, X.: Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. Nonlinear Dyn. 75(4), 701–708 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, D.Y., Tian, B., Jiang, Y., Sun, W.R.: Soliton solutions and Bäcklund transformations of a (2+1)-dimensional nonlinear evolution equation via the Jaulent–Miodek hierarchy. Nonlinear Dyn. 78, 2341–2347 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mirzazadeh, M.: Soliton solutions of Davey–Stewartson equation by trial equation method and ansatz approach. Nonlinear Dyn. 82, 1775–1780 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, Y.H., Gao, Y.T., Meng, G.Q., Yu, X., Shen, Y.J., Sun, Z.Y.: Bilinear forms and soliton interactions for two generalized KdV equations for nonlinear waves. Nonlinear Dyn. 78, 349–357 (2014)

    Article  MathSciNet  Google Scholar 

  8. Sun, Z.Y., Gao, Y.T., Liu, Y., Yu, X.: Soliton management for a variable-coefficient modified Korteweg-de Vries equation. Phys. Rev. E 84, 026606 (2011)

    Article  Google Scholar 

  9. Saha, A., Chatterjee, P.: Solitonic, periodic, quasiperiodic and chaotic structures of dust ion acoustic waves in nonextensive dusty plasmas. Eur. Phys. J. D 69, 1–8 (2015)

    Article  Google Scholar 

  10. Zhen, H.L., Tian, B., Wang, Y.F., Liu, D.Y.: Soliton solutions and chaotic motions of the Zakharov equations for the Langmuir wave in the plasma. Phys. Plasmas 22, 032307 (2015)

    Article  Google Scholar 

  11. Zhen, H.L., Tian, B., Sun, Y., Chai, J., Wen, X.Y.: Solitons and chaos of the Klein-Gordon-Zakharov system in a high-frequency plasma. Phys. Plasmas 22, 102304 (2015)

    Article  Google Scholar 

  12. Zhang, J.: Stability of attractive Bose–Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sun, W.R., Tian, B., Jiang, Y., Zhen, H.L.: Rogue matter waves in a Bose–Einstein condensate with the external potential. Eur. Phys. J. D 68, 1–7 (2014)

    Article  Google Scholar 

  14. Alakhaly, G.A., Dey, B.: Discrete breather and soliton-mode collective excitations in Bose–Einstein condensates in a deep optical lattice with tunable three-body interactions. Eur. Phys. J. D 69, 1–7 (2015)

    Article  Google Scholar 

  15. Andreev, P.A., Kuzmenkov, L.S.: Exact analytical soliton solutions in dipolar Bose–Einstein condensates. Eur. Phys. J. D 68, 1–14 (2014)

    Article  Google Scholar 

  16. Sun, W.R., Tian, B., Wang, Y.F., Zhen, H.L.: Soliton excitations and interactions for the three-coupled fourth-order nonlinear Schrödinger equations in the alpha helical proteins. Eur. Phys. J. D 69, 1–9 (2015)

    Article  Google Scholar 

  17. Jiang, H.J., Xiang, J.J., Dai, C.Q., Wang, Y.Y.: Nonautonomous bright soliton solutions on continuous wave and cnoidal wave backgrounds in blood vessels. Nonlinear Dyn. 75, 201–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Agrawal, G.P.: Nonlinear Fiber Optics. Academic press, California (2007)

    MATH  Google Scholar 

  19. Sun, W.R., Tian, B., Jiang, Y., Zhen, H.L.: Optical rogue waves associated with the negative coherent coupling in an isotropic medium. Phys. Rev. E 91(2), 023205 (2015)

    Article  Google Scholar 

  20. Wang, H., Ling, D., Chen, G., Zhu, X., He, Y.: Defect solitons in nonlinear optical lattices with parity-time symmetric Bessel potentials. Eur. Phys. J. D 69, 1–6 (2015)

    Article  Google Scholar 

  21. Zhou, Q.: Soliton and soliton-like solutions to the modified Zakharov–Kuznetsov equation in nonlinear transmission line. Nonlinear Dyn. 83, 1429–1435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hirota, R., Ohta, Y.: Hierarchies of coupled soliton equations. I. J. Phys. Soc. Jpn. 60(3), 798–809 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1192 (1971)

    Article  MATH  Google Scholar 

  24. Wazwaz, A.M.: Multiple kink solutions for two coupled integrable (2+1)-dimensional systems. Appl. Math. Lett. 58, 1–6 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wazwaz, A.M.: New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: multiple soliton solutions. Chaos Solitons Fractals 76, 93–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wazwaz, A.M.: Multiple soliton solutions for an integrable couplings of the Boussinesq equation. Ocean Eng. 73, 38–40 (2013)

    Article  Google Scholar 

  27. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoullis equation approach. Nonlinear Dyn. 81(4), 1933–1949 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Biswas, A., Mirzazadeh, M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Belic, M.: Singular solitons in optical metamaterials by ansatz method and simplest equation approach. J. Mod. Opt. 61(19), 1550–1555 (2014)

    Article  Google Scholar 

  29. Zhou, Q., Zhong, Y., Mirzazadeh, M., Bhrawy, A.H., Zerrad, E., Biswas, A.: Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion. Waves Random Complex Media 26(2), 204–210 (2016)

    Article  MathSciNet  Google Scholar 

  30. Wazwaz, A.M.: Variants of a (3+ 1)-dimensional generalized BKP equation: multiple-front waves solutions. Comput. Fluids 97, 164–167 (2014)

    Article  MathSciNet  Google Scholar 

  31. Ma, W.X., Zhu, Z.: Solving the (3+ 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. Appl. Math. Comput. 218(24), 11871–11879 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Ma, W.X.: Bilinear equations, Bell polynomials and linear superposition principle. J. Phys. Conf. Ser. 411, 012021 (2013)

  33. Ma, W.X.: A refined invariant subspace method and applications to evolution equations. Sci. China Math. 55, 1769–1778 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2, 140–144 (2011)

    Google Scholar 

  35. Nakatsuka, H., Grischkowsky, D., Balant, A.C.: Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett. 47, 910 (1981)

    Article  Google Scholar 

  36. Grischkowsky, D., Balant, A.C.: Optical pulse compression based on enhanced frequency chirping. Appl. Phys. Lett. 41, 1–3 (1982)

    Article  Google Scholar 

  37. Nakazawa, M., Kubota, H., Suzuki, K., Yamada, E., Sahara, A.: Recent progress in soliton transmission technology. Chaos 10, 486–514 (2000)

    Article  Google Scholar 

  38. Lakoba, T.I., Kaup, D.J.: Hermite–Gaussian expansion for pulse propagation in strongly dispersion managed fibers. Phys. Rev. E 58, 6728 (1998)

    Article  Google Scholar 

  39. Ma, W.X., Chen, M.: Direct search for exact solutions to the nonlinear Schrödinger equation. Appl. Math. Comput. 215(8), 2835–2842 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Yan, Z., Dai, C.: Optical rogue waves in the generalized inhomogeneous higher-order nonlinear Schrödinger equation with modulating coefficients. J. Opt. 15, 064012 (2013)

    Article  Google Scholar 

  41. Li, J., Zhang, H.Q., Xu, T., Zhang, Y.X., Tian, B.: Soliton-like solutions of a generalized variable-coefficient higher order nonlinear Schrödinger equation from inhomogeneous optical fibers with symbolic computation. J. Phys. A 40, 13299 (2007)

    Article  MATH  Google Scholar 

  42. Feng, Y.J., Gao, Y.T., Sun, Z.Y., Zuo, D.W., Shen, Y.J., Sun, Y.H., Yu, X.: Anti-dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in an inhomogeneous optical fiber. Phys. Scr. 90, 045201 (2015)

    Article  Google Scholar 

  43. Yang, R., Li, L., Hao, R., Li, Z., Zhou, G.: Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrödinger equation. Phys. Rev. E 71, 036616 (2005)

    Article  MathSciNet  Google Scholar 

  44. Hao, R., Li, L., Li, Z., Zhou, G.: Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. Phys. Rev. E 70, 066603 (2004)

    Article  Google Scholar 

  45. Tian, B., Gao, Y.T., Zhu, H.W.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: variable-coefficient bilinear form, Bäcklund transformation, brightons and symbolic computation. Phys. Lett. A 366, 223–229 (2007)

    Article  MATH  Google Scholar 

  46. Meng, X.H., Zhang, C.Y., Li, J., Xu, T., Zhu, H.W., Tian, B.: Analytic multi-solitonic solutions of variable-coefficient higher-order nonlinear Schrödinger models by modified bilinear method with symbolic computation. Z. Naturforsch. A 62, 13–20 (2007)

    Article  MATH  Google Scholar 

  47. Dai, C.Q., Zhang, J.F.: New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients. J. Phys. A 39, 723 (2006)

    Article  MATH  Google Scholar 

  48. Bagrov, V.G., Samsonov, B.F.: Darboux transformation of the Schrödinger equation. Phys. Part. Nucl. 28, 374–397 (1997)

    Article  Google Scholar 

  49. Pina, J., Abueva, B., Goedde, C.G.: Periodically conjugated solitons in dispersion-managed optical fiber. Opt. Commun. 176, 397–407 (2000)

    Article  Google Scholar 

  50. Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Rev. Lett. 78, 448 (1997)

    Article  Google Scholar 

  51. Li, Z., Li, L., Tian, H., Zhou, G.: New types of solitary wave solutions for the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 84, 4096 (2000)

    Article  Google Scholar 

  52. Karpman, V.I.: The extended third-order nonlinear Schrödinger equation and Galilean transformation. Eur. Phys. J. B 39, 341–350 (2004)

    Article  Google Scholar 

  53. Annou, K., Annou, R.: Dromion in space and laboratory dusty plasma. In: 2012 Abstracts IEEE International Conference on Plasma Science (ICOPS), p. 2P-19. IEEE

  54. Lou, S.Y.: Dromion-like structures in a (3+ 1)-dimensional KdV-type equation. J. Phys. A 29, 5989 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  55. Hietarinta, J., Hirota, R.: Multidromion solutions to the Davey-Stewartson equation. Phys. Lett. A 145, 237–244 (1990)

  56. Yoshida, N., Nishinari, K., Satsuma, J., Abe, K.: Dromion can be remote-controlled. J. Phys. A 31, 3325 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Gilson, C.R., Macfarlane, S.R.: Dromion solutions of noncommutative Davey-Stewartson equations. J. Phys. A 42, 235202 (2009)

  58. Zhong, W.P., Belic, M.R., Xia, Y.: Special soliton structures in the (2+ 1)-dimensional nonlinear Schrödinger equation with radially variable diffraction and nonlinearity coefficients. Phys. Rev. E 83, 036603 (2011)

    Article  Google Scholar 

  59. Wong, P., Pang, L.H., Huang, L.G., Li, Y.Q., Lei, M., Liu, W.J.: Dromion-like structures and stability analysis in the variable coefficients complex Ginzburg–Landau equation. Ann. Phys. 360, 341–348 (2015)

    Article  MathSciNet  Google Scholar 

  60. Ma, W.X., Qin, Z., Lü, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84(2), 923–931 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

    Article  MATH  Google Scholar 

  62. Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic press, Boston (1997)

    MATH  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the editors, reviewers and members of our discussion group for their valuable suggestions. This work has been supported by the National Natural Science Foundation of China under Grant No. 11272023 and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JW., Gao, YT., Feng, YJ. et al. Solitons and dromion-like structures in an inhomogeneous optical fiber. Nonlinear Dyn 87, 851–862 (2017). https://doi.org/10.1007/s11071-016-3083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3083-8

Keywords

Navigation