Skip to main content
Log in

A systematic study of autonomous and nonautonomous predator–prey models with combined effects of fear, migration and switching

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the dynamics of a predator–prey system under the combined effects of fear, migration and switching phenomena. This study is new in the sense that the dynamics of such system was studied either through fear or migration, or switching, but the combined effects of such three factors are yet to be explored. We observe oscillatory behavior of the system in the absence of fear, migration and switching, whereas the system shows stable dynamics if anyone of these three factors is introduced. After analyzing the behavior of system with fear, migration and switching, we find that the system does not possess periodic solution whenever the predator population experiences intraspecies competition, but in the absence of intraspecies competition among predator population, fear of predators destabilizes the system, whereas on increasing the migration rates, the system first undergoes subcritical Hopf-bifurcation and then supercritical Hopf-bifurcation settling the system to stable coexistence. Existence of multiple limit cycles is also observed. Our results show that switching behavior of predator population supports the survival of prey and predator populations. We extend our model by assuming the fear parameters as time dependent. We find that the nonautonomous system exhibits periodic solutions, whereas the corresponding autonomous system shows stable focus. Moreover, we observe that if the autonomous system undergoes a Hopf-bifurcation through limit cycle oscillations, the corresponding nonautonomous system shows higher periodic solutions. Almost periodic behavior of the system is also observed by setting the fear parameters as almost periodic functions of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Lima, S., Dill, L.M.: Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640 (1990)

    Article  Google Scholar 

  2. Schmitz, O.J., Beckerman, A.P., Brien, K.M.: Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78, 1388–1399 (1997)

    Article  Google Scholar 

  3. Preisser, E., Bolnick, D.I., Benard, M.F.: Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005)

    Article  Google Scholar 

  4. Zanette, L.Y., et al.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334, 1398–1401 (2011)

    Article  Google Scholar 

  5. Suraci, J.P., et al.: Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698 (2016)

    Article  Google Scholar 

  6. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73, 1179–1204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Panday, P., Pal, N., Samanta, S., Chattopadhyay, J.: Stability and bifurcation analysis of a three-species food chain model with fear. Int. J. Bifur. Chaos 28(1), 1850009 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pal, S., Pal, N., Samanta, S., Chattopadhyay, J.: Fear effect in prey and hunting cooperation among predators in a Leslie–Gower model. Math. Biosci. Eng. 16(5), 5146–5179 (2019)

    Article  MathSciNet  Google Scholar 

  9. Pal, S., Pal, N., Samanta, S., Chattopadhyay, J.: Effect of hunting cooperation and fear in a predator-prey model. Ecol. Compl. 39, 100770 (2019)

    Article  Google Scholar 

  10. Sha, A., et al.: Backward bifurcation, oscillations and chaos in an eco-epidemiological model with fear effect. J. Biol. Dyn. 13(1), 301–327 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Panday, P., et al.: Delay induced multiple stability switch and chaos in a predator-prey model with fear effect. Math. Comput. Simul. 172, 134–158 (2020)

    Article  MathSciNet  Google Scholar 

  12. Panday, P., et al.: A three species food chain model with fear induced trophic cascade. Int. J. Appl. Comput. Math. 5(4), 100 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hossain, M., et al.: Fear induced stabilization in an intraguild predation model. Int. J. Bifur. Chaos 30(04), 2050053 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hossain, M., Pal, N., Samanta, S.: Impact of fear on an eco-epidemiological model. Chaos Soliton. Fract. 134, 109718 (2020)

    Article  MathSciNet  Google Scholar 

  15. Kumar, V., Kumari, N.: Controlling chaos in three species food chain model with fear effect. Math. Biosci. Eng. 5(2), 828–842 (2020)

    MathSciNet  Google Scholar 

  16. Upadhyay, R.K., Mishra, S.: Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Math. Biosci. Eng. 16(1), 338–372 (2019)

    Article  MathSciNet  Google Scholar 

  17. Tiwari, V., et al.: Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator-prey systems. Appl. Math. Comput. 371, 124948 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Zhang, H., et al.: Impact of the fear effect in a prey-predator model incorporating a prey refuge. Appl. Math. Comput. 356, 328–337 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Wang, Z., et al.: The effect of the fear factor on the dynamics of predator-prey model incorporating the prey refuge. Chaos 29, 083109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kumar, A., Dubey, B.: Modeling the effect of fear in a prey-predator system with prey refuge and gestation delay. Int. J. Bifur. Chaos 29(14), 1950195 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mondal, S., Maiti, A., Samanta, G.P.: Effctes of fear and additional food in adelayed predator-prey model. Biophys. Rev. Lett. 13(04), 157–177 (2018)

    Article  Google Scholar 

  22. Mondal, S., Samanta, G.P.: Dynamics of a delayed predator-prey interaction incorporating non-linear prey refuge under the influence of fear effect and additional food. J. Phys. A. Math. Theor 53, 295601 (2020)

  23. Das, A., Samanta, G.P.: Modeling the fear effect on a stochastics prey-predator system with additional food for the predator. J. Phys. A. Math. Theor. 51(46), 465601 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kundu, K., et al.: Impact of fear effect in a discrete-time predator-prey system. Bull. Cal. Math. Soc. 110(3), 245–264 (2018)

    Google Scholar 

  25. Abrams, P.A.: Adaptive foraging by predators as a cause of predator-prey cycles. Evol. Ecol. 6, 56–72 (1992)

    Article  Google Scholar 

  26. Cressman, R., Krivan, V., Garay, J.: Ideal free distributions, evolutionary games, and population dynamics in multiple-species environments. Am. Nat. 164, 473–489 (2004)

    Article  Google Scholar 

  27. Abrams, P.A.: Habitat choice in predator-prey systems: spatial instability due to interacting adaptive movements. Am. Nat. 169(5), 581–594 (2007)

    Article  Google Scholar 

  28. Murdoch, W.: Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969)

    Article  Google Scholar 

  29. Pal, N., Samanta, S., Chattopadhyay, J.: Revisited Hastings and Powell model with omnivory and predator switching. Chaos Soliton Fract. 66, 58–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Samanta, S., et al.: Chaos in a nonautonomous eco-epidemiological model with delay. Appl. Math. Model. 79, 865–880 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gopalsamy, K., Xue-Zhong, He: Oscillations and convergence in an almost periodic competition system. Acta Appl. Math. 46, 247–266 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yuan, T., Pand, L., Zhang, T.: Permanence, almost periodic oscillations and stability of delayed predator-prey system with general functional response. Int. J. Appl. Math. 49(2), 1–11 (2019)

    MathSciNet  Google Scholar 

  33. Zhang, Z.: Almost periodic solution of a modified Leslie–Gower ptredator-prey model with Beddington–DeAngelis functional response. J. Appl. Math. 2013(1–9), 834047 (2013)

    MATH  Google Scholar 

  34. Greggor, A.L., et al.: Seasonal changes in neophobia and its consistency in rooks: the effect of novelty type and dominance position. Anim. Behav. 121, 11–20 (2016)

    Article  Google Scholar 

  35. Elliott, K.H., et al.: Experimental evidence for within- and cross-seasonal effects of fear on survival and reproduction. J. Anim. Ecol. 85, 507–515 (2016)

    Article  Google Scholar 

  36. Roy, J., Alam, S.: Fear factor in a prey-predator system in deterministic and stochastic environment. Phys. A Stat. Mech. Appl. 541, 123359 (2020)

    Article  MathSciNet  Google Scholar 

  37. Ton, T.V., Hieu, N.T.: Dynamics of species in a model with two predators and one prey. Nonlinear Anal. 74, 4868–4881 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Q., Fan, M., Wang, K.: Dynamics of a class of nonautonomous semi-ratio-dependent predator-prey system with functional responses. J. Math. Anal. Appl. 278, 443–471 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhijun, Z.: Dynamics of a non-autonomous ratio-dependent food chain model. Appl. Math. Comp. 215, 1274–1287 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  41. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, Boston (1992)

    Book  MATH  Google Scholar 

  42. Yoshizawa, T.: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions. Springer, New York (1975)

    Book  MATH  Google Scholar 

  43. Blower, S.M., Dowlatabadi, M.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62, 229–243 (1994)

    Article  MATH  Google Scholar 

  44. Marino, S., et al.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Song, Z.G., Zhen, B., Xu, J.: Species coexistence and chaotic behavior induced by multiple delays in a food chain system. Ecol. Compl. 19, 9–17 (2014)

    Article  Google Scholar 

  47. Song, Z., Zhen, B., Hu, D.: Multiple bifurcations and coexistence in an inertial two-neuron system with multiple delays. Cognit. Neurodyn. 14, 359–374 (2020)

    Article  Google Scholar 

  48. Song, Z., Yang, K., Xu, J., Wei, Y.: Multiple pitchfork bifurcations and multiperiodicity coexistences in a delay-coupled neural oscillator system with inhibitory-to-inhibitory connection. Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 327–345 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Song, Z., Xu, J.: Codimension-two bursting analysis in the delayed neural system with external stimulations. Nonlinear Dyn. 67(1), 309–328 (2012)

    Article  MATH  Google Scholar 

  50. Samanta, S., Chowdhury, T., Chattopadhyay, J.: Mathematical modeling of cascading migration in a tri-trophic food-chain system. J. Biol. Phys. 39, 469–487 (2013)

    Article  Google Scholar 

  51. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations, 4th edn. Wiley, New York (1989)

    MATH  Google Scholar 

  52. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear Systems. Marcel Dekker Inc., New York/Basel (1989)

    MATH  Google Scholar 

  53. Li, Y., Muldowney, J.S.: On Bendixson’s criterion. J. Differ. Eqn. 106, 27–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the reviewers whose comments and suggestions have helped the improvements of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydev Chattopadhyay.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical standard

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We define a new variable \(U=x+y+z\). For an arbitrary \(\sigma >0\), by summing up the equations in system (1), we obtain

$$\begin{aligned}&\frac{\mathrm{d}U}{\mathrm{d}t}+\sigma U\le (r_1+\sigma )x\\&\quad +(r_2+\sigma )y-b_1x^2-b_2y^2-(d_1-\sigma )z. \end{aligned}$$

Since \(0<p_{12},p_{21},\delta _1,\delta _2\le 1\), choosing \(d_1\ge \sigma \), from the above equation, we get

$$\begin{aligned}&\frac{\mathrm{d}U}{\mathrm{d}t}+\sigma U\le (r_1+\sigma )x\\&\quad +(r_2+\sigma )y-b_1x^2-b_2y^2. \end{aligned}$$

Thus, we obtain the following upper bound,

$$\begin{aligned}&\frac{\mathrm{d}U}{\mathrm{d}t}+\sigma U\le \frac{(r_1+\sigma )^2}{4b_1}\\&\quad +\frac{(r_2+\sigma )^2}{4b_2}=H \ \text {(say)}. \end{aligned}$$

Applying standard results on differential inequalities [52], we have

$$\begin{aligned}&U(t)\le \frac{H}{\sigma }+e^{-\sigma t}\\&\quad \left( U(0)-\frac{H}{\sigma }\right) \\&\quad \le \max \left\{ \frac{H}{\sigma },U(0)\right\} =M \ \text {(say)}. \end{aligned}$$

Thus, there exists an \(M>0\), depending only on the parameters of system (1), such that \(0\le U(t)\le M\) for all sufficiently large values of t. Hence, the solutions of system (1) and consequently all the densities appearing in the system are ultimately bounded above [51].

Fig. 20
figure 20

Extinction of a z population, b x and z populations and c y and z populations in system (24). Parameters are at the same values as in Table 1 except in a \(r_1=0.07\), \(\beta _1=0.06\), \(r_2=0.06\), \(\beta _2=0.049\), \(\delta _1=0.01\), \(d_1=0.38\), \(d_2=0.1\), \(a_{11}=0.05\), \(a_{22}=0.25\), b \(r_1=0.1\), \(e_1=0.99\), \(p_{21}=0.0002\), \(r_2=0.08\), \(e_2=0.0005\), \(\beta _2=0.0049\), \(\delta _2=0.02\), \(d_2=0.01\), \(a_{11}=0.05\), \(a_{22}=0.25\) and c \(r_1=0.1\), \(e_1=0.00001\), \(\beta _1=0.0006\), \(r_2=0.08\), \(e_2=0.3\), \(p_{12}=0.00075\), \(\delta _1=0.05\), \(d_2=0.01\), \(a_{11}=0.05\), \(a_{22}=0.25\)

Fig. 21
figure 21

Time series of system (24). Parameters are at the same values as in Table 1 except \(a_1=0.1\), \(d_2=0\), \(a_{11}=0.05\) and \(a_{22}=0.25\)

Fig. 22
figure 22

Global stability of positive periodic solution for the system (24). Parameters are at the same values as in Table 1 except \(a_1=0.1\), \(d_2=0\), \(a_{11}=0.05\) and \(a_{22}=0.25\). Figure shows that solution trajectories starting from three different initial points, (0.4557, 0.3224, 1.8601), (0.4557, 0.3224, 1.9601) and (0.4557, 0.3224, 1.5601), ultimately converge to a unique positive periodic solution

Fig. 23
figure 23

Time series of system (24). Parameters are at the same values as in Table 1 except \(a_1=0.5\), \(d_2=0\), \(a_{11}=0.05\) and \(a_{22}=0.25\)

Fig. 24
figure 24

System (24) exhibits almost periodic solution for the parameter values as in Table 1 except \(r_1=0.9\), \(a_1=0.1\), \(r_2=0.9\), \(\delta _1=0.8\), \(\delta _2=0.5\), \(d_2=0.5\), \(a_{11}=0.05\) and \(a_{22}=0.25\). Here, the forms of time-dependent parameters are chosen as \(a_1(t)=a_1+a_{11}[\sin (\omega t)+\sin (\sqrt{5}\omega t)]\) and \(a_2(t)=a_2+a_{22}[\sin (\omega t)+\sin (\sqrt{5}\omega t)]\)

Since \(\displaystyle \lim _{t\rightarrow \infty }\sup [x(t)+y(t)+z(t)]\le M,\) there exist \(T_1,T_2,T_3>0\) such that \(x(t)\le x_M\) \(\forall \) \(t\ge T_1\), \(y(t)\le y_M\) \(\forall \) \(t\ge T_2\) and \(z(t)\le z_M\) \(\forall \) \(t\ge T_3\), where \(x_M\), \(y_M\) and \(z_M\) are finite positive constants with \(x_M+y_M+z_M\le M\). Hence, for all \(t\ge \max \{T_1,T_2,T_3\}=T\), \(x(t)\le x_M\), \(y(t)\le y_M\) and \(z(t)\le z_M\). Let us define \(M_1=\max \{x_M,y_M,z_M\}\).

Now, from the first equation of system (1), we have

$$\begin{aligned}&\frac{\mathrm{d}x}{\mathrm{d}t}\ge \frac{rx}{1+a_1z_M}\\&\quad -r_{01}x-b_1x^2-e_1x-\beta _1xz_M. \end{aligned}$$

Hence, it follows that for some \(x_m\),

$$\begin{aligned}&\lim _{t\rightarrow \infty }\inf x(t)\\&\quad \ge \frac{\frac{r_1}{1+a_1z_M}-r_{01}-e_1-\beta _1z_M}{b_1}=x_m. \end{aligned}$$

Also, from the second equation of system (1), we have

$$\begin{aligned} \frac{\mathrm{d}y}{\mathrm{d}t}\ge \frac{r_2y}{1+a_2z_M}-r_{02}y-b_2y^2-e_2y-\beta _2yz_M. \end{aligned}$$

Thus, for some \(y_m\), we have

$$\begin{aligned} \lim _{t\rightarrow \infty }\inf y(t)\ge \frac{\frac{r_2}{1+a_2z_M}-r_{02}-e_2-\beta _2z_M}{b_2}=y_m. \end{aligned}$$

Now, from the last equation of system (1), we obtain

$$\begin{aligned}&\frac{\mathrm{d}z}{\mathrm{d}t}\ge \frac{\delta _1\beta _1x^2_mz}{x_M+y_M}\\&\quad +\frac{\delta _2\beta _2y^2_mz}{x_M+y_M}-d_1z-d_2z^2. \end{aligned}$$

Therefore, for some \(z_m\), we have

$$\begin{aligned} \lim _{t\rightarrow \infty }\inf z(t)\ge \frac{\frac{\delta _1\beta _1x^2_m+\delta _2\beta _2y^2_m}{x_M+y_M}-d_1}{d_2}=z_m. \end{aligned}$$

Let \(M_2=\min \{x_m,y_m,z_m\}\). For \(M_2\) to be positive, the conditions in (4) must hold. Hence, the theorem follows.

Appendix B

Jacobian of the system (1) is obtained as,

$$\begin{aligned} J=\left( \begin{array}{ccc} J_{11} &{}\quad J_{12} &{}\quad J_{13} \\ J_{21} &{}\quad J_{22} &{}\quad J_{23} \\ J_{31} &{}\quad J_{32} &{}\quad J_{33} \end{array}\right) , \end{aligned}$$

where

$$\begin{aligned} J_{11}= & {} \frac{r_1}{1+a_1z}-r_{01}-2b_1x-e_1-\frac{\beta _1xz(x+2y)}{(x+y)^2}, \\ J_{12}= & {} e_2p_{21}+\frac{\beta _1x^2z}{(x+y)^2}, \\ J_{13}= & {} -\frac{r_1a_1x}{(1+a_1z)^2}-\frac{\beta _1x^2}{x+y},\\ J_{21}= & {} e_1p_{12}+\frac{\beta _2y^2z}{(x+y)^2}, \\ J_{22}= & {} \frac{r_2}{1+a_2z}-r_{02}-2b_2y-e_2-\frac{\beta _2yz(2x+y)}{(x+y)^2}, \\ J_{23}= & {} -\frac{r_2a_2y}{(1+a_2z)^2}-\frac{\beta _2y^2}{x+y},\\ J_{31}= & {} \frac{\delta _1\beta _1xz(x+2y)}{(x+y)^2}-\frac{\delta _2\beta _2y^2z}{(x+y)^2}, \\ J_{32}= & {} -\frac{\delta _1\beta _1x^2z}{(x+y)^2}+\frac{\delta _2\beta _2yz(2x+y)}{(x+y)^2},\\ J_{33}= & {} \frac{\delta _1\beta _1x^2}{x+y}+\frac{\delta _2\beta _2y^2}{x+y}-d_1-2d_2z. \end{aligned}$$
  1. 1.

    Evaluating the Jacobian at the equilibrium \(E_1\), one eigenvalue is obtained as \(-d_1\), while the remaining two are given by roots of the quadratic:

    $$\begin{aligned} \lambda ^2+{\overline{A}}_1\lambda +{\overline{A}}_2=0, \end{aligned}$$
    (57)

    where

    $$\begin{aligned} {\overline{A}}_1= & {} -\{r_1+r_2-(e_1+e_2+r_{01}+r_{02})\}, \\ {\overline{A}}_2= & {} \{r_1-(r_{01}+e_1)\}\{r_2-(r_{02}+e_2)\}\\&\quad -e_1e_2p_{12}p_{21}. \end{aligned}$$

    Clearly, under conditions in (16), both roots of equation (57) are either negative or have negative real parts.

  2. 2.

    At the equilibrium \(E_2\), one root of Jacobian is found to be \(\displaystyle \frac{\delta _1\beta _1\{r_1-(r_{01}+e_1)\}}{b_1}-d_1,\) and the others two can be obtained as roots of the quadratic:

    $$\begin{aligned} \lambda ^2+{\widetilde{A}}_1\lambda +{\widetilde{A}}_2=0, \end{aligned}$$
    (58)

    where

    $$\begin{aligned} {\widetilde{A}}_1= & {} r_1-(r_{01}+e_1)-\{r_2-(r_{02}+e_2)\}, \\ {\widetilde{A}}_2= & {} -[\{r_1-(r_{01}+e_1)\}\{r_2-(r_{02}+e_2)\}\\&\quad +e_1e_2p_{12}p_{21}]. \end{aligned}$$

    For the existence of equilibrium \(E_2\), \(r_1-(r_{01}+e_1)\) is positive, while the positive value of \(r_2-(r_{02}+e_2)\) leads to existence of equilibrium \(E_3\), and in that case \({\widetilde{A}}_2<0\). Hence, Eq. (58) has one positive and one negative roots, and thus the equilibrium \(E_2\) is unstable. Moreover, if conditions in (17) hold, then both roots of Eq. (58) are either negative or have negative real parts, and hence then the equilibrium \(E_2\) is stable.

  3. 3.

    At the equilibrium \(E_3\), the Jacobian gives one eigenvalue as \(\displaystyle \frac{\delta _2\beta _2\{r_2-(r_{02}+e_2)\}}{b_2}-d_1,\)  while others two as roots of the quadratic:

    $$\begin{aligned} \lambda ^2+{\widehat{A}}_1\lambda +{\widehat{A}}_2=0, \end{aligned}$$
    (59)

    where

    $$\begin{aligned} {\widehat{A}}_1= & {} r_2-(r_{02}+e_2)-\{r_1-(r_{01}+e_1)\}, \\ {\widehat{A}}_2= & {} -[\{r_1-(r_{01}+e_1)\}\{r_2-(r_{02}+e_2)\}+e_1e_2p_{12}p_{21}]. \end{aligned}$$

    For the existence of equilibrium \(E_3\), \(r_2-(r_{02}+e_2)\) is positive, while the positive value of \(r_1-(r_{01}+e_1)\) leads to existence of equilibrium \(E_2\), and in that case \({\widehat{A}}_2<0\). Hence, Eq. (59) has one positive and one negative roots, and thus the equilibrium \(E_3\) is unstable. Moreover, if conditions in (18) hold, then both roots of Eq. (59) are either negative or have negative real parts, and hence the equilibrium \(E_3\) is stable.

  4. 4.

    Characteristic equation of the Jacobian evaluated at the equilibrium \(E_4\) is obtained as,

    $$\begin{aligned} \lambda ^3+\check{A}_1\lambda ^2+\check{A}_2\lambda +\check{A}_3=0, \end{aligned}$$
    (60)

    where

    $$\begin{aligned} \check{A}_1= & {} b_1x_4+d_2z_4-\left( \frac{r_2}{1+a_2z_4}-r_{02}-e_2\right) ,\\ \check{A}_2= & {} x_4z_4\left\{ b_1d_2+\delta _1\beta _1\right. \\&\quad \left. \left( \beta _1+\frac{r_1a_1}{(1+a_1z_4)^2}\right) \right\} \\&\quad -(b_1x_4+d_2z_4)\left( \frac{r_2}{1+a_2z_4}-r_{02}-e_2\right) \\&\quad -e_1p_{12}(e_2p_{21}+\beta _1z_4),\\ \check{A}_3= & {} -x_4z_4\left( \frac{r_2}{1+a_2z_4}-r_{02}-e_2\right) \\&\quad \left\{ b_1d_2+\delta _1\beta _1\left( \beta _1+\frac{r_1a_1}{(1+a_1z_4)^2}\right) \right\} \\&\quad -e_1p_{12}z_4\left\{ d_2(e_2p_{21}+\beta _1z_4)\right. \\&\quad \left. +\delta _1\beta _1x_4\left( \beta _1+\frac{r_1a_1}{(1+a_1z_4)^2}\right) \right\} . \end{aligned}$$

    Note that if \(\displaystyle \frac{r_2}{1+a_2z_4}-r_{02}-e_2>0,\) then \(\check{A}_3<0\), and hence Eq. (60) has at least one positive root. Thus, the equilibrium \(E_4\) is unstable. On the other hand, if \(\displaystyle \frac{r_2}{1+a_2z_4}-r_{02}-e_2<0,\) then \(\check{A}_1\) is positive. Further, if \(\check{A}_3\) and \(\check{A}_1\check{A}_2-\check{A}_3\) are positive, then the roots of Eq. (60) are either negative or have negative real parts, and hence the equilibrium \(E_4\) is stable.

  5. 5.

    Characteristic equation of the Jacobian evaluated at the equilibrium \(E_5\) is obtained as,

    $$\begin{aligned} \lambda ^3+\acute{A}_1\lambda ^2+\acute{A}_2\lambda +\acute{A}_3=0, \end{aligned}$$
    (61)

    where

    $$\begin{aligned} \acute{A}_1= & {} b_2y_5+d_2z_5-\left( \frac{r_1}{1+a_1z_5}-r_{01}-e_1\right) ,\\ \acute{A}_2= & {} y_5z_5\left\{ b_2d_2+\delta _2\beta _2\right. \\&\quad \left. \left( \beta _2+\frac{r_2a_2}{(1+a_2z_5)^2}\right) \right\} \\&\quad -(b_2y_5+d_2z_5)\left( \frac{r_1}{1+a_1z_5}-r_{01}-e_1\right) \\&\quad -e_2p_{21}(e_1p_{12}+\beta _2z_5),\\ \acute{A}_3= & {} -y_5z_5\left( \frac{r_1}{1+a_1z_5}-r_{01}-e_1\right) \\&\quad \left\{ b_2d_2+\delta _2\beta _2\left( \beta _2+\frac{r_2a_2}{(1+a_2z_5)^2}\right) \right\} \\&\quad -e_2p_{21}z_5\left\{ d_2(e_1p_{12}+\beta _2z_5)\right. \\&\quad \left. +\delta _2\beta _2y_5\left( \beta _2+\frac{r_2a_2}{(1+a_2z_5)^2}\right) \right\} . \end{aligned}$$

    Note that if \(\displaystyle \frac{r_1}{1+a_1z_5}-r_{01}-e_1>0,\) then \(\acute{A}_3<0\), and hence, Eq. (61) has at least one positive root. Thus, the equilibrium \(E_5\) is unstable. On the other hand, if \(\displaystyle \frac{r_1}{1+a_1z_5}-r_{01}-e_1<0,\) then \(\acute{A}_1\) is positive. Further, if \(\acute{A}_3\) and \(\acute{A}_1\acute{A}_2-\acute{A}_3\) are positive, then the roots of Eq. (61) are either negative or have negative real parts, and hence the equilibrium \(E_5\) is stable.

  6. 6.

    One eigenvalue of the Jacobian at the equilibrium \(E_6\) is given by

    $$\begin{aligned} \frac{\delta _1\beta _1x^2_6}{x_6+y_6}+\frac{\delta _2\beta _2y^2_6}{x_6+y_6}-d_1, \end{aligned}$$

    which is negative if the first condition in (21) holds; the remaining two eigenvalues are given by roots of the quadratic,

    $$\begin{aligned} \lambda ^2+\grave{A}_1\lambda +\grave{A}_2=0, \end{aligned}$$
    (62)

    where

    $$\begin{aligned} \grave{A}_1= & {} -[r_1+r_2-\{r_{01}+r_{02}\\&\quad +e_1+e_2+2(b_1x_6+b_2y_6)\}],\\ \grave{A}_2= & {} \{r_1-(r_{01}+e_1+2b_1x_6)\}\\&\quad \{r_2-(r_{02}+e_2+2b_2y_6)\}-e_1e_2p_{12}p_{21}. \end{aligned}$$

    Note that roots of Eq. (62) are either negative or have negative real parts if the last two conditions in (21) hold.

  7. 7.

    At the equilibrium \(E^*\), the Jacobian takes the form,

    $$\begin{aligned} J_{E^*}=\left( \begin{array}{ccc} a_{11} &{}\quad a_{12} &{}\quad -a_{13} \\ a_{21} &{}\quad a_{22} &{}\quad -a_{23} \\ a_{31} &{}\quad a_{32} &{}\quad -a_{33} \end{array}\right) , \end{aligned}$$

    where

    $$\begin{aligned} a_{11}= & {} \frac{r_1}{1+a_1z^*}-2b_1x^*-r_{01}\\&\quad -e_1-\frac{\beta _1x^*z^*(x^*+2y^*)}{(x^*+y^*)^2}, \\ a_{12}= & {} e_2p_{21}+\frac{\beta _1{x^*}^2z^*}{(x^*+y^*)^2}, \\ a_{13}= & {} \frac{r_1a_1x^*}{(1+a_1z^*)^2}+\frac{\beta _1{x^*}^2}{x^*+y^*},\\ a_{21}= & {} e_1p_{12}+\frac{\beta _2{y^*}^2z^*}{(x^*+y^*)^2}, \\ a_{22}= & {} \frac{r_2}{1+a_2z^*}-2b_2y^*-r_{02}\\&\quad -e_2-\frac{\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}, \\ a_{23}= & {} \frac{r_2a_2y^*}{(1+a_2z^*)^2}+\frac{\beta _2{y^*}^2}{x^*+y^*},\\ a_{31}= & {} \frac{\delta _1\beta _1x^*z^*(x^*+2y^*)}{(x^*+y^*)^2}\\&\quad -\frac{\delta _2\beta _2{y^*}^2z^*}{(x^*+y^*)^2},\\ a_{32}= & {} -\frac{\delta _1\beta _1{x^*}^2z^*}{(x^*+y^*)^2}\\&\quad +\frac{\delta _2\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2},\\ a_{33}= & {} -d_2z^* \end{aligned}$$

    The associated characteristic equation is given by

    $$\begin{aligned} \lambda ^3+\breve{A}_1\lambda ^2+\breve{A}_2\lambda +\breve{A}_3=0, \end{aligned}$$
    (63)

    where

    $$\begin{aligned} \breve{A}_1= & {} -\frac{r_1}{1+a_1z^*}+2b_1x^*+r_{01}+e_1\\&\quad +\frac{\beta _1x^*z^*(x^*+2y^*)}{(x^*+y^*)^2}-\frac{r_2}{1+a_2z^*}\\&\quad +2b_2y^*+r_{02}+e_2+\frac{\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}+d_2z^*,\\ \breve{A}_2= & {} \left\{ \frac{r_1}{1+a_1z^*}-2b_1x^*-r_{01}\right. \\&\quad \left. -e_1-\frac{\beta _1x^*z^*(x^*+2y^*)}{(x^*+y^*)^2}\right\} \\&\quad \left\{ \frac{r_2}{1+a_2z^*}-2b_2y^*-r_{02}\right. \\&\quad \left. -e_2 -\frac{\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}-d_2z^*\right\} \\&\quad +\left( \frac{r_2a_2y^*}{(1+a_2z^*)^2}+\frac{\beta _2{y^*}^2}{x^*+y^*}\right) \\&\quad \left( \frac{\delta _2\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}\right. \\&\quad \left. -\frac{\delta _1\beta _1{x^*}^2z^*}{(x^*+y^*)^2}\right) \\&\quad +\left( \frac{r_1a_1x^*}{(1+a_1z^*)^2}+\frac{\beta _1{x^*}^2}{x^*+y^*}\right) \\&\quad \left( \frac{\delta _1\beta _1x^*z^*(x^*+2y^*)}{(x^*+y^*)^2}\right. \\&\quad \left. -\frac{\delta _2\beta _2{y^*}^2z^*}{(x^*+y^*)^2}\right) \\&\quad -\left( e_2p_{21}+\frac{\beta _1{x^*}^2z^*}{(x^*+y^*)^2}\right) \\&\quad \left( e_1p_{12}+\frac{\beta _2{y^*}^2z^*}{(x^*+y^*)^2}\right) \\&\quad -d_2z^*\left\{ \frac{r_2}{1+a_2z^*}-2b_2y^*-r_{02}-e_2\right. \\&\quad \left. -\frac{\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}\right\} ,\\ \breve{A}_3= & {} \left\{ \frac{r_1}{1+a_1z^*}-2b_1x^*-r_{01}\right. \\&\quad \left. -e_1-\frac{\beta _1x^*z^*(x^*+2y^*)}{(x^*+y^*)^2}\right\} \\&\quad \left[ d_2z^*\left\{ \frac{r_2}{1+a_2z^*}-2b_2y^*-r_{02}-e_2\right. \right. \\&\quad \left. \left. -\frac{\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}\right\} \right. \\&\quad -\left( \frac{r_2a_2y^*}{(1+a_2z^*)^2}+\frac{\beta _2{y^*}^2}{x^*+y^*}\right) \\&\quad \left( \frac{\delta _2\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}\right. \\&\quad \left. \left. -\frac{\delta _1\beta _1{x^*}^2z^*}{(x^*+y^*)^2}\right) \right] \\&\quad +\left( e_2p_{21}+\frac{\beta _1{x^*}^2z^*}{(x^*+y^*)^2}\right) \\&\quad \left[ \left( \frac{\delta _1\beta _1x^*z^*(x^*+2y^*)}{(x^*+y^*)^2}\right. \right. \\&\quad \left. -\frac{\delta _2\beta _2{y^*}^2z^*}{(x^*+y^*)^2}\right) \\&\quad \left. \left( \frac{r_2a_2y^*}{(1+a_2z^*)^2}+\frac{\beta _2{y^*}^2}{x^*+y^*}\right) \right. \\&\quad \left. -d_2z^*\left( e_1p_{12}+\frac{\beta _2{y^*}^2z^*}{(x^*+y^*)^2}\right) \right] \\&\quad +\left( \frac{r_1a_1x^*}{(1+a_1z^*)^2}+\frac{\beta _1{x^*}^2}{x^*+y^*}\right) \\&\quad \left[ \left( e_1p_{12}+\frac{\beta _2{y^*}^2z^*}{(x^*+y^*)^2}\right) \right. \\&\quad \left( \frac{\delta _2\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}\right. \\&\quad \left. \left. -\frac{\delta _1\beta _1{x^*}^2z^*}{(x^*+y^*)^2}\right) \right. \\&\quad -\left( \frac{\delta _1\beta _1x^*z^*(x^*+2y^*)}{(x^*+y^*)^2}\right. \\&\quad \left. -\frac{\delta _2\beta _2{y^*}^2z^*}{(x^*+y^*)^2}\right) \\&\quad \left\{ \frac{r_2}{1+a_2z^*}-2b_2y^*-r_{02}\right. \\&\quad \left. \left. -e_2-\frac{\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}\right\} \right] . \end{aligned}$$

    Employing Routh–Hurwitz criterion together with equation (63), we get that roots of Eq. (63) are either negative or with negative real parts if and only if the conditions in (22) hold; thus, the equilibrium \(E^*\) is locally asymptotically stable.

Appendix C

The second additive compound matrix of the Jacobian of system (1) at the coexistence equilibrium \(E^*\) is given by,

$$\begin{aligned} J^{[2]}=\left( \begin{array}{ccc} a_{11}+a_{22} &{}\quad a_{23} &{}\quad -a_{13} \\ a_{32} &{}\quad a_{11}+a_{33} &{}\quad a_{12} \\ -a_{31} &{}\quad a_{21} &{}\quad a_{22}+a_{33} \end{array}\right) . \end{aligned}$$

Let \(\displaystyle |X|_\infty =\sup _i|X_i|.\) The logarithmic norm \(\mu _\infty (J^{[2]})\) of \(J^{[2]}\) endowed with the vector norm \(|X|_\infty \) is the supremum of \(a_{11}+a_{22}+|a_{23}|+|a_{13}|\), \(a_{11}+a_{33}+|a_{32}|+|a_{12}|\) and \(a_{22}+a_{33}+|a_{31}|+|a_{21}|\).

Now, \(a_{11}+a_{22}+|a_{23}|+|a_{13}|<0\) if

$$\begin{aligned}&\frac{r_1\{1+a_1(x^*+z^*)\}}{(1+a_1z^*)^2}+\frac{r_2\{1+a_2(y^*+z^*)\}}{(1+a_2z^*)^2}\\&\quad +\frac{\beta _1{x^*}^2+\beta _2{y^*}^2}{x^*+y^*}\\&\quad <r_{01}+r_{02}+e_1+e_2+2(b_1x^*+b_2y^*)\\&\quad +\frac{z^*\{\beta _1{x^*}^2+\beta _2{y^*}^2+2x^*y^*(\beta _1+\beta _2)\}}{(x^*+y^*)^2}; \end{aligned}$$

\(a_{11}+a_{33}+|a_{32}|+|a_{12}|<0\) if

$$\begin{aligned}&\frac{r_1}{1+a_1z^*}+e_2p_{21}+\frac{(1-\delta _1)\beta _1{x^*}^2z^*+\delta _2\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}\\&\quad <r_{01}+e_1+2b_1x^*+d_2z^*+\frac{\beta _1x^*z^*(x^*+2y^*)}{(x^*+y^*)^2} \end{aligned}$$

and \(a_{22}+a_{33}+|a_{31}|+|a_{21}|<0\) if

$$\begin{aligned}&\frac{r_2}{1+a_2z^*}+e_1p_{12}+\frac{\delta _1\beta _1x^*z^*(x^*+2y^*)+(1-\delta _2)\beta _2{y^*}^2z^*}{(x^*+y^*)^2}\\&\quad <r_{02}+e_2+2b_2y^*+d_2z^*+\frac{\beta _2y^*z^*(2x^*+y^*)}{(x^*+y^*)^2}. \end{aligned}$$

Following [53], system (1) has no periodic solution around the coexistence equilibrium \(E^*\) provided condition (23) is satisfied.

Appendix D

Let the critical value of \(a_1\), say \(a^*_1\), be defined by

$$\begin{aligned} \breve{A}_1(a^*_1)\breve{A}_2(a^*_1)-\breve{A}_3(a^*_1)=0. \end{aligned}$$
(64)

Thus, at \(a_1=a^*_1\), characteristic Eq. (63) can be rewritten as \((\lambda +\breve{A}_1)(\lambda ^2+\breve{A}_2)=0\). This equation has three roots, a pair of purely imaginary roots \(\lambda _{1,2}=\pm i\sqrt{\breve{A}_2}\) and a negative one \(\lambda _3=-\breve{A}_1\). This ensures the presence of Hopf-bifurcation.

To show the transversality condition, let us consider a point \(a_1\) in an \(\epsilon -\) neighborhood of \(a^*_1\); the above roots become function of \(a_1\), namely \(\lambda _{1,2}=\kappa (a_1)\pm i\rho (a_1)\). Substituting them into Eq. (63) and separating real and imaginary parts, we have

$$\begin{aligned}&\kappa ^3-3\kappa \rho ^2+\breve{A}_1(\kappa ^2-\rho ^2)+\breve{A}_2\kappa +\breve{A}_3=0, \end{aligned}$$
(65)
$$\begin{aligned}&3\kappa ^2\rho -\rho ^3+2\breve{A}_1\kappa \rho +\breve{A}_2\rho =0. \end{aligned}$$
(66)

As \(\rho (a_1)\ne 0\), from Eq. (66), it follows that

$$\begin{aligned} \rho ^2=3\kappa ^2+2\breve{A}_1\kappa +\breve{A}_2. \end{aligned}$$

Substituting this in Eq. (65), we find

$$\begin{aligned} 8\kappa ^3+8\breve{A}_1\kappa ^2+2\kappa (\breve{A}^2_1+\breve{A}_2)+\breve{A}_1\breve{A}_2-\breve{A}_3=0.\nonumber \\ \end{aligned}$$
(67)

From the above equation, recalling that \(\kappa (a^*_1)=0\), we get

$$\begin{aligned} \left[ \frac{\mathrm{d}\kappa }{da_1}\right] _{a_1=a^*_1}=-\left[ \frac{1}{2(\breve{A}^2_1+\breve{A}_2)}\frac{d}{\mathrm{d}a_1}(\breve{A}_1\breve{A}_2-\breve{A}_3)\right] _{a_1=a^*_1} \end{aligned}$$

and the latter does not vanish provided that

$$\begin{aligned} \left[ \frac{d}{\mathrm{d}a_1}(\breve{A}_1\breve{A}_2-\breve{A}_3)\right] _{a_1=a^*_1}\ne 0. \end{aligned}$$
(68)

To better understand the nature of the instability, we determine the initial period and the amplitude of the oscillatory solutions. Set \(\breve{A}_3=\psi \breve{A}_1\breve{A}_2\) in Eq. (63). Assuming that \(\lambda \) depends continuously on \(\psi \), we rewrite Eq. (63) as

$$\begin{aligned} \lambda ^3+\breve{A}_1\lambda ^2+\breve{A}_2\lambda +\psi \breve{A}_1\breve{A}_2=0. \end{aligned}$$
(69)

At \(\psi =\psi ^*=1\), because \(\breve{A}_3=\breve{A}_1\breve{A}_2\), Eq. (69), as seen above, factorizes into \((\lambda +\breve{A}_1)(\lambda ^2+\breve{A}_2)\), which has a pair of purely imaginary roots, \(\lambda (\psi ^*)=\pm i\sqrt{\breve{A}_2}\), while the other one is \(\lambda (\psi ^*)=-\breve{A}_1\).

Further, \(\breve{A}_1\breve{A}_2-\breve{A}_3=(1-\psi )\breve{A}_1\breve{A}_2\). Thus, if \(\psi \in (0,1)\), then \(\breve{A}_1\breve{A}_2-\breve{A}_3>0\) and this ensures stability, conversely, we have instability for \(\psi >1\).

If we set \(\psi =\psi ^*+\epsilon ^2\xi \), where \(|\epsilon |\ll 1\) and \(\xi =\pm 1\), then \(\lambda (\psi )=\lambda (\psi ^*+\epsilon ^2\xi )\), so that the linear portion in \(\epsilon ^2\xi \) of the Taylor series expansion of \(\lambda \) about \(\psi ^*\) is

$$\begin{aligned} \lambda (\psi )=\lambda (\psi ^*)+\lambda '(\psi ^*)\epsilon ^2\xi +O(\epsilon ^4), \end{aligned}$$
(70)

where prime denotes differentiation with respect to \(\psi \).

Differentiating and simplifying Eq. (69) yields

$$\begin{aligned} \lambda '(\psi )\equiv \frac{\breve{A}_1\breve{A}_2}{2(\breve{A}^2_1+\breve{A}_2)}\pm i\frac{\breve{A}^2_1\sqrt{\breve{A}_2}}{2(\breve{A}^2_1+\breve{A}_2)}. \end{aligned}$$
(71)

Using the fact that \(\mathfrak {R}(\lambda (\psi ^*))=0\) and \(\displaystyle \mathfrak {R}(\lambda '(\psi ^*))=\frac{\breve{A}_1\breve{A}_2}{2(\breve{A}^2_1+\breve{A}_2)}>0,\) and substituting \(\lambda (\psi ^*)\) and \(\lambda '(\psi )\) into Eq. (70), we obtain the approximation

$$\begin{aligned} \lambda (\psi )= & {} \lambda (\psi ^*)+\lambda '(\psi ^*)\epsilon ^2\xi \nonumber \\&\quad =\frac{\breve{A}_1\breve{A}_2\epsilon ^2\xi }{2(\breve{A}^2_1+\breve{A}_2)} \nonumber \\&\quad \pm i\sqrt{\breve{A}_2}\left( 1+\frac{\breve{A}^2_1\epsilon ^2\xi }{2(\breve{A}^2_1+\breve{A}_2)}\right) +O(\epsilon ^4). \end{aligned}$$
(72)

Thus, the initial period and amplitude of the oscillations associated with the loss of stability when \(\psi >\psi ^*\), respectively, are

$$\begin{aligned}&\frac{2\pi }{\sqrt{\breve{A}_2}\left( 1+\frac{\breve{A}^2_1\epsilon ^2\xi }{2(\breve{A}^2_1+\breve{A}_2)}\right) } \quad \text {and} \\&\quad \exp \left( \frac{\breve{A}_1\breve{A}_2\epsilon ^2\xi }{2(\breve{A}^2_1+\breve{A}_2)}\right) ,\\&\quad \epsilon =\sqrt{\frac{|\psi -\psi ^*|}{|\xi |}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, P.K., Amri, K.A.N.A., Samanta, S. et al. A systematic study of autonomous and nonautonomous predator–prey models with combined effects of fear, migration and switching. Nonlinear Dyn 103, 2125–2162 (2021). https://doi.org/10.1007/s11071-021-06210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06210-y

Keywords

Navigation