Skip to main content
Log in

Adaptive control for discontinuous variable-order fractional systems with disturbances

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the global asymptotic stabilization and finite-time stabilization issues for variable-order fractional systems with partial a priori bounded disturbances by designing an appropriate adaptive controller. Via the inductive method and Arzela-Ascoli theorem, the existence and uniqueness of the solution for the considered system is firstly verified under the proposed control strategy. By applying Lyapunov stability theory, non-smooth analysis and inequality technique, sufficient stabilization criteria are established under the framework of variable-order fractional Filippov differential inclusion. Finally, two numerical simulations are given to demonstrate the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luo, W., Liu, Y., Ma, T.: Consensus of fractional-order multi-agent systems with impulsive disturbance. IFAC Pap. On Line 52, 174–178 (2019)

    Article  Google Scholar 

  2. Li, Y., Zhao, D., Chen, Y., Podlubny, I., Zhang, C.: Finite energy Lyapunov function candidate for fractional order general nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 78, 104886 (2019)

    Article  MathSciNet  Google Scholar 

  3. Alessandretti, A., Pequito, S., Pappas, G., Aguiar, A.: Finite-dimensional control of linear discrete-time fractional-order systems. Automatica 115, 108512 (2020)

    Article  MathSciNet  Google Scholar 

  4. Butzer, P., Westphal, U.: An Introduction to Fractional Calculus. World Scientific, Singapore (2000)

    Book  Google Scholar 

  5. Wu, C., Liu, X.: Lyapunov and external stability of Caputo fractional order switching systems. Nonlinear Anal. Hybrid Syst. 34, 134–146 (2019)

    Article  MathSciNet  Google Scholar 

  6. Zambrano-Serrano, E., Campos-Cantón, E., Muñoz-Pacheco, J.: Strange attractors generated by a fractional order switching system and its topological horseshoe. Nonlinear Dyn. 83, 1629–1641 (2016)

    Article  MathSciNet  Google Scholar 

  7. Soczkiewicz, E.: Application of fractional calculus in the theory of viscoelasticity. Mol. Quantum Acoust. 23, 397–404 (2002)

    Google Scholar 

  8. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Hackensack, NJ (2001)

    MATH  Google Scholar 

  9. Meng, R., Yin, D., Drapaca, C.: A variable order fractional constitutive model of the viscoelastic behavior of polymers. Int. J. Non-Linear Mech. 113, 171–177 (2019)

    Article  Google Scholar 

  10. Bhrawy, A., Zaky, M.: Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 85, 1815–1823 (2016)

    Article  MathSciNet  Google Scholar 

  11. Samko, S., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277–300 (1993)

    Article  MathSciNet  Google Scholar 

  12. Sheng, H., Sun, H., Coopmans, C., Chen, Y., Bohannan, G.: A physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top. 193, 93–104 (2011)

    Article  Google Scholar 

  13. Ramirez, L., Coimbra, C.: On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys. D Non-linear Phenom. 240, 1111–1118 (2011)

    Article  MathSciNet  Google Scholar 

  14. Tolba, M., Saleh, H., Mohammad, B., Al-Qutayri, M.: Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system. Nonlinear Dyn. 99, 3143–3154 (2020)

    Article  Google Scholar 

  15. Zhang, L., Yu, C., Liu, T.: Control of finite-time anti-synchronization for variable-order fractional chaotic systems with unknown parameters. Nonlinear Dyn. 86, 1967–1980 (2016)

    Article  Google Scholar 

  16. Razminiaa, A., Dizajib, A., Majda, V.: Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Modell. 55, 1106–1117 (2012)

    Article  MathSciNet  Google Scholar 

  17. Zhang, S.: Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions. Commun. Nonlinear Sci. Numer. Simul. 18, 3289–3297 (2013)

    Article  MathSciNet  Google Scholar 

  18. Xu, Y., He, Z.: Existence and uniqueness results for Cauchy problem of variable-order fractional differential equations. Int. J. Appl. Math. Comput. Sci. 43, 295–306 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Jiang, J., Chen, H., Guirao, J., Cao, D.: Existence of the solution and stability for a class of variable fractional order differential systems. Chaos Solitons Fractals 128, 269–274 (2019)

    Article  MathSciNet  Google Scholar 

  20. Jiang, J., Cao, D., Chen, H.: Sliding mode control for a class of variable-order fractional chaotic systems. J. Frankl. Inst. 357, 10127–10158 (2020)

    Article  MathSciNet  Google Scholar 

  21. Du, H., Wen, G., Wu, D., Cheng, Y., Lü, J.: Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems. Automatica 113, 1–11 (2020)

    Article  MathSciNet  Google Scholar 

  22. Liu, X., Ho, D., Song, Q., Cao, J.: Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances. Nonlinear Dyn. 90, 2057–2068 (2017)

    Article  MathSciNet  Google Scholar 

  23. Wu, Y., Jiang, B., Lu, N.: A descriptor system approach for estimation of incipient faults with application to high-speed railway traction devices. IEEE Trans. Syst. Man Cybern. Syst. 49, 2108–2118 (2019)

    Article  Google Scholar 

  24. Wu, Y., Jiang, B., Wang, Y.: Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains. ISA Trans. 99, 488–495 (2020)

    Article  Google Scholar 

  25. Peng, X., Wu, H., Cao, J.: Global nonfragile synchronization in finite time for fractional-order discontinuous neural networks with nonlinear growth activations. IEEE Trans. Neural Netw. Learn. Syst. 30, 2123–2137 (2019)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Wu, H., Cao, J.: Global leader-following consensus in finite time for fractional-order multi-agent systems with discontinuous inherent dynamics subject to nonlinear growth. Nonlinear Anal. Hybrid Syst. 37, 100888 (2020)

    Article  MathSciNet  Google Scholar 

  27. Liu, Y., Arimoto, S., Parra-Vega, V., Kitagaki, K.: Decentralized adaptive control of multiple manipulators in cooperations. Int. J. Control 67, 649–674 (1997)

    Article  Google Scholar 

  28. Dydek, Z., Annaswamy, A., Lavretsky, E.: Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. 21, 1400–1406 (2013)

    Article  Google Scholar 

  29. Yoerger, D., Slotine, J.: Adaptive sliding control of an experimental underwater vehicle. In: IEEE International Conference on Robotics and Automation, pp. 2746–2751. IEEE, Sacramento, California (1991)

  30. Chen, Y., Wei, Y., Liang, S., Wang, Y.: Indirect model reference adaptive control for a class of fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 39, 458–471 (2016)

    Article  MathSciNet  Google Scholar 

  31. Gong, P., Lan, W.: Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica 92, 92–99 (2018)

    Article  MathSciNet  Google Scholar 

  32. Jmal, A., Naifar, O., Makhlouf, A.Ben, Derbel, N., Hammami, M.: Adaptive stabilization for a class of fractional order systems with nonlinear uncertainty. Arab. J. Sci. Eng. 4, 2195–2203 (2020)

  33. Wang, J., Shao, C., Chen, Y.: Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance. Mechatronics 53, 8–19 (2018)

    Article  Google Scholar 

  34. Valrio, D., Costa, J.: Variable-order fractional derivatives and their numerical approximations. Signal Process. 91, 470–483 (2011)

    Article  Google Scholar 

  35. Xu, L., Wang, X.: Mathematical Analysis Methods and Examples. Higher Education Press, Beijing (1983)

    Google Scholar 

  36. Gronwall, T.: Gronwall-Bellman note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Annu. Math. 20, 292–296 (1919)

    Article  MathSciNet  Google Scholar 

  37. Bellman, R.: The stability of solutions of linear differential equations. Duke Math. J. 10, 643–647 (1943)

    Article  MathSciNet  Google Scholar 

  38. Filippov, A.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer, Dordrecht (1988)

    Book  Google Scholar 

  39. Aubin, J., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  Google Scholar 

  40. Forti, M., Nistri, P.: Global convergence of neural networks with discontinuous neuron activations. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50, 1421–1435 (2003)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Nos. 61773281, 61673292, 61933014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Wang, Y. & Zuo, Z. Adaptive control for discontinuous variable-order fractional systems with disturbances. Nonlinear Dyn 103, 1693–1708 (2021). https://doi.org/10.1007/s11071-021-06199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06199-4

Keywords

Navigation