Skip to main content
Log in

Anomalous amplitude-frequency dependence in a micromechanical resonator under synchronization

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is well known that the oscillation frequency relates approximately quadratically with amplitude in a Duffing nonlinear oscillator while the frequency is independent of amplitude in a linear oscillator. In this article, the dynamics of a micromechanical oscillator during synchronization is studied and anomalous amplitude-frequency (a-f) dependence in a micromechanical resonator is observed. We theoretically and experimentally observed that in a linear resonator the amplitude is tuned quadratically with frequency while tuned linearly in a hardening as well as a softening nonlinear resonator, when the self-sustained resonator is synchronized to an external weak perturbation. Further investigation shows that the tunable range of the oscillation amplitude of a certain oscillator directly relies on the synchronization bandwidth, perturbation amplitude and frequency difference. The slope of the dependence can be tuned by phase delay in the feedback loop, while the feedback force dominantly determines the properties of the dependence from nonlinear relation to linear relation. This anomalous a-f effect provides a convenient technique for precise amplitude control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agarwal, M., Mehta, H., Candler, R.N., Chandorkar, S.A., Kim, B., Hopcroft, M.A., Melamud, R., Bahl, G., Yama, G., Kenny, T.W., et al.: Scaling of amplitude-frequency-dependence nonlinearities in electrostatically transduced microresonators. J. Appl. Phys. 102(7), 074903 (2007)

    Article  Google Scholar 

  2. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. John Wiley and Sons, New Jersey (2008)

    MATH  Google Scholar 

  3. Eisley, J.G., Bennett, J.A.: Stability of large amplitude forced motion of a simply supported beam. Int. J. Nonlinear Mech. 5(4), 645 (1970)

    Article  MATH  Google Scholar 

  4. Fu, Y., Hong, J., Wang, X.: Analysis of nonlinear vibration for embedded carbon nanotubes. J. Sound Vib. 296(4–5), 746 (2006)

    Article  Google Scholar 

  5. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Phenomena. Wiley, New Jersey (2011)

    Book  MATH  Google Scholar 

  6. Van Beek, J.T., Puers, R.: A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22(1), 013001 (2012)

    Article  Google Scholar 

  7. Nguyen, C.T.C.: MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 251–270 (2007)

    Article  Google Scholar 

  8. Lifshitz, R., Cross, M.C.: Nonlinear dynamics of nanomechanical and micromechanical resonators. Rev. Nonlinear Dyn. Complex. 1, 1 (2008)

    MATH  Google Scholar 

  9. Agarwal, M., Chandorkar, S.A., Mehta, H., Candler, R.N., Kim, B., Hopcroft, M.A., Melamud, R., Jha, C.M., Bahl, G., Yama, G., Kenny, T.W., Murmann, B.: A study of electrostatic force nonlinearities in resonant microstructures. Appl. Phys. Lett. 92(10), 2006 (2008)

    Article  Google Scholar 

  10. Han, J., Zhang, Q., Wang, W.: Static bifurcation and primary resonance analysis of a MEMS resonator actuated by two symmetrical electrodes. Nonlinear Dyn. 80(3), 1585 (2015)

    Article  Google Scholar 

  11. Kacem, N., Baguet, S., Duraffourg, L., Jourdan, G., Dufour, R., Hentz, S.: Overcoming limitations of nanomechanical resonators with simultaneous resonances. Appl. Phys. Lett. 107(7), 073105 (2015)

    Article  Google Scholar 

  12. Rubiola, E.: Phase noise and frequency stability in oscillators. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  13. Papariello, L., Eichler, A., Zilberberg, O., Leuch, A., Degen, C.L., Chitra, R.: Parametric symmetry breaking in a nonlinear resonator. Phys. Rev. Lett. 117(21), 1 (2016)

    Google Scholar 

  14. Eichler, A., Heugel, T.L., Leuch, A., Degen, C.L., Chitra, R., Zilberberg, O.: A parametric symmetry breaking transducer. Appl. Phys. Lett. 112(23), 233105 (2018)

    Article  Google Scholar 

  15. Villanueva, L.G., Kenig, E., Karabalin, R.B., Matheny, M.H., Lifshitz, R., Cross, M.C., Roukes, M.L.: Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110(17), 1 (2013)

    Article  Google Scholar 

  16. Huan, R., Pu, D., Wang, X., Wei, X.: Effects of phase delay on synchronization in a nonlinear micromechanical oscillator. Appl. Phys. Lett. 114(23), 233501 (2019)

    Article  Google Scholar 

  17. Karabalin, R.B., Lifshitz, R., Cross, M.C., Matheny, M.H., Masmanidis, S.C., Roukes, M.L.: Signal amplification by sensitive control of bifurcation topology. Phys. Rev. Lett. 106(9), 1 (2011)

    Article  Google Scholar 

  18. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)

    Article  Google Scholar 

  19. Wang, X., Huan, R., Zhu, W., Pu, D., Wei, X.: Frequency locking in the internal resonance of two electrostatically coupled micro-resonators with frequency ratio 1:3. Mech. Syst. Signal Process. 146, 106981 (2021)

    Article  Google Scholar 

  20. Soskin, S.M., Mannella, R., McClintock, P.V.E.: Zero-dispersion phenomena in oscillatory systems. Phys. Rep. 373(4–5), 247 (2003)

    Article  MathSciNet  Google Scholar 

  21. Huang, L., Soskin, S., Khovanov, I., Mannella, R., Ninios, K., Chan, H.B.: Frequency stabilization and noise-induced spectral narrowing in resonators with zero dispersion. Nat. Commun. 10(1), 1 (2019)

    Article  Google Scholar 

  22. Agrawal, D.K., Woodhouse, J., Seshia, Aa: Observation of locked phase dynamics and enhanced frequency stability in synchronized micromechanical oscillators. Phys. Rev. Lett. 111(8), 84101 (2013)

    Article  Google Scholar 

  23. Matheny, M.H., Grau, M., Villanueva, L.G., Karabalin, R.B., Cross, M.C., Roukes, M.L.: Phase synchronization of two anharmonic nanomechanical oscillators. Phys. Rev. Lett. 112(1), 14101 (2014)

    Article  Google Scholar 

  24. Hajjaj, A.Z., Alfosail, F.K., Jaber, N., Ilyas, S., Younis, M.I.: Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part II-simultaneous 1:1 and 2:1 internal resonances. Nonlinear Dyn. 99(1), 393 (2020)

    Article  Google Scholar 

  25. Hajjaj, A.Z., Alfosail, F.K., Jaber, N., Ilyas, S., Younis, M.I.: Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part II-simultaneous 1:1 and 2:1 internal resonances. Nonlinear Dyn. 99(1), 407 (2020)

    Article  Google Scholar 

  26. Hajjaj, A., Jaber, N., Ilyas, S., Alfosail, F., Younis, M.I.: Linear and nonlinear dynamics of micro and nano-resonators: Review of recent advances. Int. J. Nonlinear Mech. 119, 103328 (2020)

    Article  Google Scholar 

  27. Li, L., Zhang, Q., Wang, W., Han, J.: Nonlinear coupled vibration of electrostatically actuated clamped-clamped microbeams under higher-order modes excitation. Nonlinear Dyn. 90(3), 1593 (2017)

    Article  Google Scholar 

  28. Zhang, W.M., Tabata, O., Tsuchiya, T., Meng, G.: Noise-induced chaos in the electrostatically actuated MEMS resonators. Phys. Lett. A 375(32), 2903 (2011)

    Article  MATH  Google Scholar 

  29. Yurke, B., Greywall, D.S., Pargellis, A.N., Busch, P.A., Laboratories, A.B., Hill, M.: Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. Phys. Rev. A 51(5), 4211 (1995)

    Article  Google Scholar 

  30. Chen, C., Zanette, D.H., Guest, J.R., Czaplewski, D.A., López, D.: Self-sustained micromechanical oscillator with linear feedback. Phys. Rev. Lett. 117(1), 1 (2016)

    Article  Google Scholar 

  31. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  32. Strogatz, S.: Sync: The Emerging Science of Spontaneous Order. Penguin, New York (2004)

    Google Scholar 

  33. Kelso, S., Schweitzer, F., Balanov, A., Janson, N., Postnov, D., Sosnovtseva, O.: Synchronization: From Simple to Complex. Springer, Berlin (2008)

    Google Scholar 

  34. Matheny, M.H., Emenheiser, J., Fon, W., Chapman, A., Salova, A., Rohden, M., Li, J., de Badyn, M.H., Pósfai, M., Duenas-Osorio, L., et al.: Exotic states in a simple network of nanoelectromechanical oscillators. Science 363(6431), eaav7932 (2019)

    Article  MathSciNet  Google Scholar 

  35. Jang, J.K., Klenner, A., Ji, X., Okawachi, Y., Lipson, M., Gaeta, A.L.: Synchronization of coupled optical microresonators. Nat. Photonics 12(11), 688 (2018)

    Article  Google Scholar 

  36. Shoshani, O., Heywood, D., Yang, Y., Kenny, T.W., Shaw, S.W.: Phase noise reduction in an MEMS oscillator using a nonlinearly enhanced synchronization domain. J. Microelectromech. Syst. 25(5), 870 (2016)

    Article  Google Scholar 

  37. Pu, D., Wei, X., Xu, L., Jiang, Z., Huan, R.: Synchronization of electrically coupled micromechanical oscillators with a frequency ratio of 3:1. Appl. Phys. Lett. 112(1), 013503 (2018)

    Article  Google Scholar 

  38. Antonio, D., Czaplewski, D.A., Guest, J.R., Lopez, D., Arroyo, S.I., Zanette, D.H.: Nonlinearity-induced synchronization enhancement in micromechanical oscillators. Phys. Rev. Lett. 114(3), 34103 (2015)

    Article  Google Scholar 

  39. Zou, X., Seshia, A.: Non-Linear Frequency Noise Modulation in a Resonant MEMS Accelerometer. IEEE Sens. J. 17, 4122–4127 (2017)

    Article  Google Scholar 

  40. Wang, X., Wei, X., Pu, D., Huan, R.: Single-electron detection utilizing coupled nonlinear microresonators. Microsyst. Nanoeng. 6(1), 78 (2020)

    Article  Google Scholar 

  41. Chen, C., Zanette, D.H., Czaplewski, D.A., Shaw, S.W., López, D.: Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nat. Commun. 8(May), 15523 (2017)

    Article  Google Scholar 

  42. Czaplewski, D.A., Chen, C., Lopez, D., Shoshani, O., Eriksson, A.M., Strachan, S., Shaw, S.W.: Bifurcation generated mechanical frequency comb. Phys. Rev. Lett. 121(24), 244302 (2018)

    Article  Google Scholar 

  43. Huan, R.H., Pu, D., Wei, X.Y.: Phase switch in the stochastic response of a micromechanical beam resonator. Acta Mech. 229(5), 2177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chen, Y.: On the vibration of beams or rods carrying a concentrated mass. J. Appl. Mech. 30(2), 310 (1963)

    Article  MATH  Google Scholar 

  45. Xu, Z., Cheung, Y.: Averaging method using generalized harmonic functions for strongly non-linear oscillators. J. Sound Vib. 174(4), 563 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yurke, B., Greywall, D., Pargellis, A., Busch, P.: Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. Phys. Rev. A 51(5), 4211 (1995)

    Article  Google Scholar 

  47. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. John Wiley and Sons, New Jersey (2008)

    MATH  Google Scholar 

  48. Arroyo, S.I., Zanette, D.H.: Synchronization properties of self-sustained mechanical oscillators. Phys. Rev. E 87(5), 052910 (2013)

    Article  Google Scholar 

  49. Taheri-Tehrani, P., Guerrieri, A., Defoort, M., Frangi, A., Horsley, D.A.: Mutual 3:1 subharmonic synchronization in a micromachined silicon disk resonator. Appl. Phys. Lett. 111(18), 183505 (2017)

    Article  Google Scholar 

  50. Awad, A., Dürrenfeld, P., Houshang, A., Dvornik, M., Iacocca, E., Dumas, R., Åkerman, J.: Long-range mutual synchronization of spin Hall nano-oscillators. Nat. Phys. 13(3), 292 (2017)

    Article  Google Scholar 

  51. Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon press, Oxford (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11772293, 51575439), National Key R and D Program of China (2018YFB2002303) and Key research and development program of Shaanxi Province (2018ZDCXL-GY-02-03). We also appreciate the support from the Collaborative Innovation Center of High-End Manufacturing Equipment and the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronghua Huan or Xueyong Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. Arch c-c beam

According to Eq. (32), we can find that if the oscillator exhibits hardening spring effect, the amplitude variation has a positive correlation to the frequency variation, while negative correlation for the softening spring oscillator. To validate this effect, we introduce an arch-type beam resonator. For the softening spring oscillation case, an arch beam is used for experiments. The model of the arch beam can be expressed as,

$$\begin{aligned} \begin{aligned} \rho S \frac{\partial ^2Y}{\partial t_1^2}=&-EI\left( \frac{\partial ^4 Y}{\partial X^4}-\frac{\, \mathrm {d}^4 Y_0}{\, \mathrm {d}X^4}\right) \\&+\frac{EA}{2L}\frac{\partial ^2 Y}{\partial X^2}\int _{0}^{L}\left[ \left( \frac{\partial Y}{\partial X}\right) ^2-\left( \frac{\, \mathrm {d}Y_0}{\, \mathrm {d}X}\right) ^2\right] \, \mathrm {d}X \end{aligned} \end{aligned}$$
(35)

where the boundary conditions are,

$$\begin{aligned} Y=Y_0=0, \frac{\partial ^2 Y}{\partial X^2}=\frac{\, \mathrm {d}^2 Y_0}{\, \mathrm {d}X^2}=0, while X=0,L \end{aligned}$$
(36)

Introducing \(W(X,t_1)=Y(X,t_1)-Y_0(X)\), Eq. (35) can be rewritten as,

$$\begin{aligned} \begin{aligned} \rho S \frac{\partial ^2W}{\partial t_1^2}=&-EI\frac{\partial ^4 W}{\partial X^4}+\frac{EA}{2L}\left[ \frac{\partial ^2 W}{\partial X^2}\right. \\&\left. +\frac{\, \mathrm {d}^2 Y_0}{\, \mathrm {d}X^2}\right] \int _{0}^{L}\left[ \left( \frac{\partial W}{\partial X}\right) ^2+2\frac{\partial W}{\partial X}\frac{\, \mathrm {d}Y_0}{\, \mathrm {d}X}\right] \, \mathrm {d}X \end{aligned} \end{aligned}$$
(37)

Redefining time \(t=(t_1/L^2)\sqrt{EI/\rho S}\) and normalizing by \(w=W/b\), \(y_0=Y_0/b\), \(x=X/L\) and \(q=QL^4/EIb\),

$$\begin{aligned} \begin{aligned} \frac{\partial ^2w}{\partial t^2}=&-\frac{\partial ^4 w}{\partial x^4}+\frac{1}{2}[\frac{\partial ^2 w}{\partial x^2}+\frac{\, \mathrm {d}^2 y_0}{\, \mathrm {d}x^2}]\int _{0}^{1}\left[ \left( \frac{\partial w}{\partial x}\right) ^2\right. \\&\left. +2\frac{\partial w}{\partial x}\frac{\, \mathrm {d}y_0}{\, \mathrm {d}x}\right] \, \mathrm {d}x \end{aligned} \end{aligned}$$
(38)

To simplify this problem, we treat the beam as a sine-type arch,

$$\begin{aligned} y_0(x)=\lambda \sin (\pi x). \end{aligned}$$
(39)

By separating the variables,

$$\begin{aligned} w(x,t)=u(t)\sin (\pi x), \end{aligned}$$
(40)

In consideration of the boundary conditions, we obtain the free vibration governing equation

$$\begin{aligned} \frac{\, \mathrm {d}^2 u(t) }{\, \mathrm {d}t^2}+\omega _0^2 u(t)+k_2 u^2(t)+ k_3 u^3(t)=0 \end{aligned}$$
(41)

where \(\omega _0^2=\pi ^4(1+0.5\lambda ^2)\), \(k_2=0.75\lambda \pi ^4\), \(k_3=0.25\pi ^4\). For a harmonic oscillator including second-order and third-order nonlinear terms, the nonlinear frequency can be expressed as \(\omega =\omega _0+(\frac{3 k_3 }{8 \omega _0}-\frac{5 k_2^2 }{12 \omega _0^3})a^2\) [51]. Therefore, the criterion for hardening or softening effect is,

$$\begin{aligned} \varDelta =\frac{9}{4}\pi ^8(1-2\lambda ^2). \end{aligned}$$
(42)

For \(\lambda ^2<0.5\), the oscillation exhibits a hardening effect. Otherwise, for \(\lambda ^2>0.5\), the softening effect emerges. We design a micromechanical arch resonator shown in Fig. 9a, where the arch parameter \(\lambda \approx 2\). Thus, the nonlinear coefficient \(\frac{3 k_3 }{8 \omega _0}-\frac{5 k_2^2 }{12 \omega _0^3}=-\frac{7}{32}\frac{\pi ^4}{\omega _0}<0\). So the arch-beam exhibits a distinct softening effect in open-loop test.

1.2 B. Phase plots during synchronization

Fig. 10
figure 10

Phase response of the linear oscillator during synchronization

Fig. 11
figure 11

Phase responses of the nonlinear oscillator during synchronization

Figure 10 shows the phase response of the linear oscillation under synchronization, when the perturbation frequency \(\varOmega _s\) is swept. During 22 s to 24.5 s, the oscillator is synchronized. Figure 11 shows the phase response of the nonlinear oscillation under synchronization,when the perturbation frequency \(\varOmega _s\) is swept. During 35.2 s to 43.6 s, the nonlinear oscillator is synchronized. As the phase of the output signal of the function generator is fixed, the oscillation phase is fixed when synchronization occurs because of the phase locking effect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, D., Yang, P., Wang, X. et al. Anomalous amplitude-frequency dependence in a micromechanical resonator under synchronization. Nonlinear Dyn 103, 467–479 (2021). https://doi.org/10.1007/s11071-020-06176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06176-3

Keywords

Navigation