Skip to main content
Log in

Phase-delay induced variation of synchronization bandwidth and frequency stability in a micromechanical oscillator

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Phase feedback is commonly utilized to set up a synchronized MEMS oscillator for high performance sensor application. It is a consensus that the synchronization region varies with phase delay with an ‘Anti-U’ mode. In this paper, phase-delay induced variation of synchronization bandwidth and frequency stability in a micromechanical oscillator is investigated analytically and experimentally. The analytical expression for predicting the synchronization bandwidth with phase delay is derived based on the mathematic model. An additional dynamic extreme point of synchronization bandwidth actuated by nonlinearity is observed, which leads to three different types (‘U’, ‘Anti-U’ and ‘M’) of variation pattern of synchronization bandwidth as feedback tuning. The variation of frequency stability along phase delay is also studied. The synchronization bandwidth and the frequency stability have exactly opposite variation pattern with phase delay in linear oscillators while they are totally consistent in nonlinear oscillators. Experimental results validate the analytical observations. Our work provides a precise way for achieving best performance of a synchronized MEMS oscillator in the sensor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Al Hafiz, M.A., Kosuru, L., Hajjaj, A.Z., Younis, M.I.: Highly tunable narrow bandpass mems filter. IEEE Trans. Electron Devices 64(8), 3392–3398 (2017)

    Article  Google Scholar 

  2. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3(1), 1–6 (2012)

    Article  Google Scholar 

  3. Antonio, D., Czaplewski, D.A., Guest, J.R., López, D., Arroyo, S.I., Zanette, D.H.: Nonlinearity-induced synchronization enhancement in micromechanical oscillators. Phys. Rev. Lett. 114(3), 034103 (2015)

  4. Asadi, K., Yu, J., Cho, H.: Nonlinear couplings and energy transfers in micro-and nano-mechanical resonators: intermodal coupling, internal resonance and synchronization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2127), 20170141 (2018)

    Article  Google Scholar 

  5. Belhaq, M., Ghouli, Z., Hamdi, M.: Energy harvesting in a Mathieu-van der Pol-duffing mems device using time delay. Nonlinear Dyn. 94(4), 2537–2546 (2018)

    Article  Google Scholar 

  6. Buonomo, A., Kennedy, M.P., Schiavo, A.L.: On the synchronization condition for superharmonic coupled QVCOS. IEEE Trans. Circuits Syst. I Regul. Pap. 58(7), 1637–1646 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y.S., Yang, C.X., Wu, Z.Q., Chen, F.Q.: 1: 2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities. Appl. Math. Mech. 22(8), 917–924 (2001)

  8. Chen, D., Zhang, H., Sun, J., Pandit, M., Sobreviela, G., Wang, Y., Seshia, A., Xie, J.: Feedthrough parasitic nonlinear resonance in micromechanical oscillators. Appl. Phys. Lett. 117(13), 133502 (2020)

  9. Cleland, A.N., Roukes, M.L.: A nanometre-scale mechanical electrometer. Nature 392(6672), 160–162 (1998)

    Article  Google Scholar 

  10. Hajjaj, A.Z., Hafiz, M.A., Younis, M.I.: Mode coupling and nonlinear resonances of mems arch resonators for bandpass filters. Sci. Rep. 7, 41820 (2017)

    Article  Google Scholar 

  11. Huan, R., Pu, D., Wei, X.: Phase switch in the stochastic response of a micromechanical beam resonator. Acta Mech. 229(5), 2177–2187 (2018)

    Article  MathSciNet  Google Scholar 

  12. Huan, R., Pu, D., Wang, X., Wei, X.: Effects of phase delay on synchronization in a nonlinear micromechanical oscillator. Appl. Phys. Lett. 114(23), 233501 (2019)

  13. Jaber, N., Ilyas, S., Shekhah, O., Eddaoudi, M., Younis, M.I.: Multimode mems resonator for simultaneous sensing of vapor concentration and temperature. IEEE Sens. J. 18(24), 10145–10153 (2018)

    Article  Google Scholar 

  14. Jin, Y., Hu, H.: Stabilization of traffic flow in optimal velocity model via delayed-feedback control. Commun. Nonlinear Sci. Numer. Simul. 18(4), 1027–1034 (2013)

    Article  MathSciNet  Google Scholar 

  15. Krylov, S., Seretensky, S.: Higher order correction of electrostatic pressure and its influence on the pull-in behavior of microstructures. J. Micromech. Microeng. 16(7), 1382 (2006)

    Article  Google Scholar 

  16. Lebrun, R., Jenkins, A., Dussaux, A., Locatelli, N., Tsunegi, S., Grimaldi, E., Kubota, H., Bortolotti, P., Yakushiji, K., Grollier, J., et al.: Understanding of phase noise squeezing under fractional synchronization of a nonlinear spin transfer vortex oscillator. Phys. Rev. Lett. 115(1), 017201 (2015)

  17. Li, L., Zhang, Q., Wang, W., Han, J.: Nonlinear coupled vibration of electrostatically actuated clamped-clamped microbeams under higher-order modes excitation. Nonlinear Dyn. 90(3), 1593–1606 (2017)

    Article  Google Scholar 

  18. Liu, R., Wang, L.: Nonlinear forced vibration of bilayer van der Waals materials drum resonator. J. Appl. Phys. 128(14), 145105 (2020)

  19. Ma, J., Wu, F., Alsaedi, A., Tang, J.: Crack synchronization of chaotic circuits under field coupling. Nonlinear Dyn. 93(4), 2057–2069 (2018)

    Article  Google Scholar 

  20. Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62(4), 875–882 (2010)

    Article  MathSciNet  Google Scholar 

  21. Mangussi, F., Zanette, D.H.: Internal resonance in a vibrating beam: a zoo of nonlinear resonance peaks. PloS One 11(9), e0162365 (2016)

  22. Matheny, M.H., Grau, M., Villanueva, L.G., Karabalin, R.B., Cross, M., Roukes, M.L.: Phase synchronization of two anharmonic nanomechanical oscillators. Phys. Rev. Lett. 112(1), 014101 (2014)

  23. Mestrom, R., Fey, R., Nijmeijer, H.: On phase feedback for nonlinear mems resonators. In: 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, pp. 765–770. IEEE (2007)

  24. Nabholz, U., Heinzelmann, W., Mehner, J.E., Degenfeld-Schonburg, P.: Amplitude-and gas pressure-dependent nonlinear damping of high-Q oscillatory mems micro mirrors. J. Microelectromech. Syst. 27(3), 383–391 (2018)

    Article  Google Scholar 

  25. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, London (2008)

    MATH  Google Scholar 

  26. Niu, J., Li, X., Xing, H.: Superharmonic resonance of fractional-order Mathieu–Duffing oscillator. J. Comput. Nonlinear Dyn. 14(7) (2019)

  27. Oberreiter, L., Seifert, U., Barato, A.C.: Stochastic discrete time crystals: entropy production and subharmonic synchronization. Phys. Rev. Lett. 126(2), 020603 (2021)

  28. Pandey, A.K., Pratap, R.: Coupled nonlinear effects of surface roughness and rarefaction on squeeze film damping in mems structures. J. Micromech. Microeng. 14(10), 1430 (2004)

    Article  Google Scholar 

  29. Pandey, M., Aubin, K., Zalalutdinov, M., Reichenbach, R.B., Zehnder, A.T., Rand, R.H., Craighead, H.G.: Analysis of frequency locking in optically driven mems resonators. J. Microelectromech. Syst. 15(6), 1546–1554 (2006)

    Article  Google Scholar 

  30. Pandey, M., Rand, R., Zehnder, A.: Perturbation analysis of entrainment in a micromechanical limit cycle oscillator. Commun. Nonlinear Sci. Numer. Simul. 12(7), 1291–1301 (2007)

    Article  Google Scholar 

  31. Pandey, M., Rand, R.H., Zehnder, A.T.: Frequency locking in a forced Mathieu–van der pol–Duffing system. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 48027, pp. 893–903 (2007)

  32. Pandit, M., Zhao, C., Sobreviela, G., Mustafazade, A., Du, S., Zou, X., Seshia, A.A.: Closed-loop characterization of noise and stability in a mode-localized resonant mems sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(1), 170–180 (2018)

    Article  Google Scholar 

  33. Pu, D., Huan, R., Wei, X.: Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization. AIP Adv. 7(3), 035204 (2017)

  34. Pu, D., Yang, P., Wang, X., Huan, R., Jiang, Z., Wei, X.: Anomalous amplitude-frequency dependence in a micromechanical resonator under synchronization. Nonlinear Dyn. 103(1), 467–479 (2021)

    Article  Google Scholar 

  35. Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)

    Article  MathSciNet  Google Scholar 

  36. Roukes, M.L., Hanay, M.S., Kelber, S., Naik, A.: Single-protein nanomechanical mass spectrometry in real time (2016). US Patent 9,347,815

  37. Sage, E., Brenac, A., Alava, T., Morel, R., Dupré, C., Hanay, M.S., Roukes, M.L., Duraffourg, L., Masselon, C., Hentz, S.: Neutral particle mass spectrometry with nanomechanical systems. Nat. Commun. 6(1), 1–5 (2015)

    Article  Google Scholar 

  38. Sato, M., Hubbard, B., Sievers, A., Ilic, B., Czaplewski, D., Craighead, H.: Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys. Rev. Lett. 90(4), 044102 (2003)

  39. Shoshani, O., Heywood, D., Yang, Y., Kenny, T.W., Shaw, S.W.: Phase noise reduction in an mems oscillator using a nonlinearly enhanced synchronization domain. J. Microelectromech. Syst. 25(5), 870–876 (2016)

    Article  Google Scholar 

  40. Sun, B., Zhao, C., Sobreviela-Falces, G., Du, S., Han, F., Zou, X., Seshia, A.: Enhanced frequency stability in a non-linear mems oscillator employing phase feedback. In: 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1115–1117. IEEE (2017)

  41. Umemura, W., Ozeki, Y., Fujita, K., Fukui, K., Itoh, K.: Subharmonic synchronization of picosecond lasers for stimulated Raman scattering microscopy. In: CLEO: Science and Innovations, p. CThF5. Optical Society of America (2011)

  42. Uranga, A., Verd, J., Marigó, E., Giner, J., Muñóz-Gamarra, J., Barniol, N.: Exploitation of non-linearities in CMOS-NEMS electrostatic resonators for mechanical memories. Sens. Actuators A Phys. 197, 88–95 (2013)

    Article  Google Scholar 

  43. Velichko, A., Belyaev, M., Putrolaynen, V., Perminov, V., Pergament, A.: Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators. Solid-State Electron. 141, 40–49 (2018)

    Article  Google Scholar 

  44. Wang, X., Huan, R., Zhu, W., Pu, D., Wei, X.: Frequency locking in the internal resonance of two electrostatically coupled micro-resonators with frequency ratio 1:3. Mech. Syst. Signal Process. 146, 106981 (2021)

  45. Xia, C., Wang, D.F., Ono, T., Itoh, T., Esashi, M.: Internal resonance in coupled oscillators-part i: a double amplification mass sensing scheme without duffing nonlinearity. Mech. Syst. Signal Process. 159, 107886 (2021)

  46. Xu, Y., Li, H., Wang, H., Jia, W., Yue, X., Kurths, J.: The estimates of the mean first exit time of a bistable system excited by Poisson white noise. J. Appl. Mech. 84(9) (2017)

  47. Xu, L., Wang, S., Jiang, Z., Wei, X.: Programmable synchronization enhanced mems resonant accelerometer. Microsyst. Nanoeng. 6(1), 1–10 (2020)

    Article  Google Scholar 

  48. Yan, B., Wang, Z., Ma, H., Bao, H., Wang, K., Wu, C.: A novel lever-type vibration isolator with eddy current damping. J. Sound Vib. 494, 115862 (2021)

  49. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, Berlin (2011)

    Book  Google Scholar 

  50. Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2018YFB2002303), National Natural Science Foundation of China (11772293, 52075432) and Key research and development program of Shaanxi Province (2018ZDCXL-GY-02-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronghua Huan or Xueyong Wei.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Pu, D., Wang, X. et al. Phase-delay induced variation of synchronization bandwidth and frequency stability in a micromechanical oscillator. Nonlinear Dyn 105, 2981–2994 (2021). https://doi.org/10.1007/s11071-021-06783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06783-8

Keywords

Navigation