Skip to main content

Advertisement

Log in

Generalized Cauchy difference iterative forecasting model for wind speed based on fractal time series

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The local irregularity and global correlation of wind speed can be described by the fractal dimension D and the Hurst parameter H. However, the existing mathematical models imply a linear relationship between the fractal dimension D and the Hurst parameter H, which is not adequate to describe the complete characteristics of the wind speed. To overcome the descriptive limitations of the \(D-H\) linearity assumption, in this paper, we introduce novel model, based on the generalized Cauchy (GC) process, for simulation and forecasting of wind speed. In the model, the fractal dimension D and Hurst parameter H can be combined arbitrarily to describe the local irregularity and global correlation of the wind speed. Furthermore, the GC process is taken as the disturbance fluctuation term in the forecasting model, and a difference iteration form is obtained as difference equation and incremental distribution. In such model, the maximum forecasting range of the wind speed is determined by the maximum Lyapunov exponent. To illustrate the properties of the model and its performance, simulating and forecasting of the actual wind speeds in two regions are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

The data link is given in the manuscript.

Abbreviations

GC:

Generalized Cauchy

LSTM:

Long short-term memory neural network

LRD:

Long-range dependence

fBm:

Fractional Brownian motion

fGn:

Fractional Gaussian noise

ACF:

Auto-correlation function

SOA:

Score of accuracy

\(x\left( t \right) \) :

Stationary Gaussian process

\({R_{XX}}\left( {\cdot } \right) \) :

Auto-correlation function

D :

Fractal dimension

H :

Hurst parameter

\(\chi \) :

Maximum Lyapunov exponent

\(\upsilon \) :

Maximum forecasting step

\({B_H}\left( t \right) \) :

Fractional Brownian motion

\(B\left( t \right) \) :

Brownian motion

\(GC\left( t \right) \) :

Generalized Cauchy process

\(\varDelta GC\left( t \right) \) :

Increment of Generalized Cauchy process

\(\mu \) :

Drift coefficient

\(\delta \) :

Fluctuation coefficient

\(X\left( t \right) \) :

Wind speed fluctuation state at time t

\(X\left( {t{\mathrm{+ }}1} \right) \) :

Wind speed fluctuation state at time \(t+1\)

References

  1. Chen, S., Liu, P., Li, Z.: Low carbon transition pathway of power sector with high penetration of renewable energy. Renew. Sustain. Energy Rev. 130, 109985 (2020). https://doi.org/10.1016/j.rser.2020.109985

    Article  Google Scholar 

  2. Ak, R., Vitelli, V., Zio, E.: An interval-valued neural network approach for uncertainty quantification in short-term wind speed prediction. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2787 (2015). https://doi.org/10.1109/TNNLS.2015.2396933

    Article  MathSciNet  Google Scholar 

  3. Tian, Z.: Generating traffic time series based on generalized cauchy process. Eng. Appl. Artif. Intell. 91, 103573 (2020). https://doi.org/10.1016/j.engappai.2020.103573

    Article  Google Scholar 

  4. Wang, J., Song, Y., Liu, F., Hou, R.: Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models. Renew. Sustain. Energy Rev. 60, 960 (2016). https://doi.org/10.1016/j.rser.2016.01.114

    Article  Google Scholar 

  5. Yan, J., Liu, Y., Han, S., Wang, Y., Feng, S.: Reviews on uncertainty analysis of wind power forecasting. Renew. Sustain. Energy Rev. 52, 1322 (2015). https://doi.org/10.1016/j.rser.2015.07.197

    Article  Google Scholar 

  6. Ye, L., Zhao, Y., Zeng, C., Zhang, C.: Short-term wind power prediction based on spatial model. Renew. Energy 101, 1067 (2017). https://doi.org/10.1016/j.renene.2016.09.069

    Article  Google Scholar 

  7. Mitchell, S.J., Lanquaye-Opoku, N., Modzelewski, H., Shen, Y., Stull, R., Jackson, P., Murphy, B., Ruel, J.C.: Comparison of wind speeds obtained using numerical weather prediction models and topographic exposure indices for predicting windthrow in mountainous terrain. For. Ecol. Manag. 254(2), 193 (2008). https://doi.org/10.1016/j.foreco.2007.07.037

    Article  Google Scholar 

  8. Xu, W., Liu, P., Cheng, L., Zhou, Y., Xia, Q., Gong, Y., Liu, Y.: Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2020.09.032

    Article  Google Scholar 

  9. Ak, R., Fink, O., Zio, E.: Two machine learning approaches for short-term wind speed time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. 27(8), 1734 (2016). https://doi.org/10.1109/TNNLS.2015.2418739

    Article  MathSciNet  Google Scholar 

  10. Navas, R.K.B., Prakash, S., Sasipraba, T.: Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense. Physica A Stat. Mech. Appl. 542, 123383 (2020). https://doi.org/10.1016/j.physa.2019.123383

    Article  Google Scholar 

  11. Ding, M., Zhou, H., Xie, H., Wu, M., Nakanishi, Y., Yokoyama, R.: A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting. Neurocomputing 365, 54 (2019). https://doi.org/10.1016/j.neucom.2019.07.058

    Article  Google Scholar 

  12. Zhang, Z., Ye, L., Qin, H., Liu, Y., Wang, C., Yu, X., Yin, X., Li, J.: Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression. Appl. Energy 247, 270 (2019). https://doi.org/10.1016/j.apenergy.2019.04.047

    Article  Google Scholar 

  13. Shahid, F., Zameer, A., Mehmood, A., Raja, M.A.Z.: A novel wavenets long short term memory paradigm for wind power prediction. Appl. Energy 269, 115098 (2020). https://doi.org/10.1016/j.apenergy.2020.115098

    Article  Google Scholar 

  14. Gan, Z., Li, C., Zhou, J., Tang, G.: Temporal convolutional networks interval prediction model for wind speed forecasting. Electr. Power Syst. Res. 191, 106865 (2021). https://doi.org/10.1016/j.epsr.2020.106865

    Article  Google Scholar 

  15. Li, L.L., Zhao, X., Tseng, M.L., Tan, R.R.: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. J. Clean. Prod. 242, 118447 (2020). https://doi.org/10.1016/j.jclepro.2019.118447

    Article  Google Scholar 

  16. Aly, H.H.H.: An intelligent hybrid model of neuro Wavelet, time series and Recurrent Kalman Filter for wind speed forecasting. Sustain. Energy Technol. Assess. 41, 100802 (2020). https://doi.org/10.1016/j.seta.2020.100802

    Article  Google Scholar 

  17. Zhang, Y., Zhao, Y., Kong, C., Chen, B.: A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic. Energy Convers. Manag. 203, 112254 (2020). https://doi.org/10.1016/j.enconman.2019.112254

    Article  Google Scholar 

  18. Cai, H., Jia, X., Feng, J., Li, W., Hsu, Y.M., Lee, J.: Gaussian Process Regression for numerical wind speed prediction enhancement. Renew. Energy 146, 2112 (2020). https://doi.org/10.1016/j.renene.2019.08.018

    Article  Google Scholar 

  19. Li, W., Jia, X., Li, X., Wang, Y., Lee, J.: A Markov model for short term wind speed prediction by integrating the wind acceleration information. Renew. Energy 164, 242 (2021). https://doi.org/10.1016/j.renene.2020.09.031

    Article  Google Scholar 

  20. Li, M., Jia-Yue, L.: On the predictability of long-range dependent series. Math. Probl. Eng. (2010). https://doi.org/10.1155/2010/397454

    Article  MathSciNet  MATH  Google Scholar 

  21. Song, W., Li, M., Li, Y., Cattani, C., Chi, C.H.: Fractional Brownian motion: difference iterative forecasting models. Chaos Solitons Fractals 123, 347 (2019). https://doi.org/10.1016/j.chaos.2019.04.021

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, M.: Fractal time series–a tutorial review. Math. Probl Eng. (2010). https://doi.org/10.1155/2010/157264

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, H., Song, W., Li, M., Kudreyko, A., Zio, E.: Fractional Levy stable motion: finite difference iterative forecasting model. Chaos Solitons Fractals 133, 109632 (2020). https://doi.org/10.1016/j.chaos.2020.109632

    Article  MathSciNet  Google Scholar 

  24. Gneiting, T., Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46(2), 269 (2004)

    Article  MathSciNet  Google Scholar 

  25. Li, M., Lim, S., Zhao, W.: Long-range dependent network traffic: a view from generalized Cauchy process (2020)

  26. Ortigueira, M.D.: Introduction to fractional linear systems. Part 2. Discrete-time case. IEE Proc. Vis. Image Signal Process. 147(1), 71 (2000). https://doi.org/10.1049/ip-vis:20000273

    Article  Google Scholar 

  27. Abu Arqub, O., Al-Smadi, M.: Atangana–Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space. Chaos Solitons Fractals 117, 161 (2018). https://doi.org/10.1016/j.chaos.2018.10.013

    Article  MathSciNet  MATH  Google Scholar 

  28. Heyde, D.W.C.: Itô’s formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stoch. Anal. (1996). https://doi.org/10.1155/S104895339600038X

    Article  MathSciNet  MATH  Google Scholar 

  29. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637 (1973)

    Article  MathSciNet  Google Scholar 

  30. Song, L., Wang, W.: Solution of the fractional Black-Scholes option pricing model by finite difference method. In: Abstract and applied analysis, vol. 2013 (Hindawi) (2013)

  31. Yuan, Q., Li, C., Yang, Y., Ye, K.: Nonlinear characteristics analysis of wind speed time series. J. Eng. Therm. Energy Power 33, 135 (2018)

    Google Scholar 

  32. Li, M., Lim, S., Feng, H.: Generating Traffic Time Series Based on Generalized Cauchy Process. https://doi.org/10.1007/978-3-540-72584-8-48 (2007)

  33. Duan, S., Wanqing, S., Cattani, C., Yasen, Y., Liu, H.: Fractional Levy stable and maximum Lyapunov exponent for wind speed prediction. Symmetry (2020). https://doi.org/10.3390/sym12040605

    Article  Google Scholar 

  34. Liu, H.F., Dai, Z.H., Li, W.F., Gong, X., Yu, Z.H.: Noise robust estimates of the largest Lyapunov exponent. Phys. Lett. A 341(1), 119 (2005). https://doi.org/10.1016/j.physleta.2005.04.048

    Article  MATH  Google Scholar 

  35. Shuang, Zhou, Xingyuan, W.J.: Chaos, Identifying the linear region based on machine learning to calculate the largest Lyapunov exponent from chaotic time series (2018)

  36. Ortigueira, M.D.: Introduction to fractional linear systems. Part 1. Continuous-time case. IEE Proc. Vis. Image Signal Process. 147(1), 62 (2000). https://doi.org/10.1049/ip-vis:20000272

    Article  Google Scholar 

  37. Abu Arqub, O., Maayah, B.: Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense. Chaos Solitons Fractals 125, 163 (2019). https://doi.org/10.1016/j.chaos.2019.05.025

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, M., Lim, S.C.: Modeling network traffic using generalized Cauchy process. Physica A Stat. Mech. Appl. 387(11), 2584 (2008). https://doi.org/10.1016/j.physa.2008.01.026

    Article  Google Scholar 

  39. Arnold, L.: Stochastic differential equations. New York (1974)

  40. Arqub, O.A., Maayah, B.: Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator. Chaos Solitons Fractals 117, 117 (2018). https://doi.org/10.1016/j.chaos.2018.10.007

    Article  MathSciNet  MATH  Google Scholar 

  41. Shi, J., Chen, T., Yuan, R., Yuan, B., Ao, P.: Relation of a new interpretation of stochastic differential equations to ito process. J. Stat. Phys. 148(3), 579 (2012)

    Article  MathSciNet  Google Scholar 

  42. Arqub, O.A., Maayah, B.: Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC—Fractional Volterra integro-differential equations. Chaos Solitons Fractals 126, 394 (2019). https://doi.org/10.1016/j.chaos.2019.07.023

    Article  MathSciNet  MATH  Google Scholar 

  43. http://www.sotaventogalicia.com/en/technical-area/real-time data/historical/

  44. Nguyen, K.T., Fouladirad, M., Grall, A.: New methodology for improving the inspection policies for degradation model selection according to prognostic measures. IEEE Trans. Reliab. 67(3), 1269 (2018)

    Article  Google Scholar 

  45. Jager, D., Andreas, A.: NREL National Wind Technology Center (NWTC): M2 Tower. Boulder, Colorado (Data) (1996)

    Google Scholar 

  46. Carrillo, R., Aysal, T., Barner, K.: A generalized Cauchy distribution framework for problems requiring robust behavior. EURASIP J. Adv. Signal Process. (2010). https://doi.org/10.1155/2010/312989

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanqing Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: the calculation process of the Lyapunov exponent

Appendix: the calculation process of the Lyapunov exponent

The chaotic nature of the fractal time series can be judged by the maximum Lyapunov exponent, and the calculation process by the small data method is as follows [33, 35]:

Step 1: Defining the time series \(\left\{ {x\left( i \right) ,i = 1,2, \cdots ,n} \right\} \) and calculate the delay time \(\varepsilon \) by the ACF method.

Step 2: Calculating embedding dimension m by Cao algorithm.

Step 3: Reconstructing the phase space.

$$\begin{aligned}&X\left( i \right) = {\left[ {x\left( i \right) ,x\left( {i + \varepsilon } \right) , \cdots x\left( {i + \left( {m - 1} \right) \varepsilon } \right) } \right] ^T}\, \, \, \, \nonumber \\&\quad \left( i = 1,2, \cdots ,M\right) , \end{aligned}$$
(44)

where \(M = n - \left( {m - 1} \right) \varepsilon \).

Step 4: Calculating the maximum Lyapunov exponent \(\chi \).

$$\begin{aligned} \chi =\frac{{\ln {d_j}\left( i \right) - \ln {C_j}}}{{i\varDelta t}}, \end{aligned}$$
(45)

where \({C_j} = {d_j}\left( 0 \right) \) and \({d_j}\left( i \right) \) are the distances between each reference point \(X\left( j \right) \) and the neighboring point \(X\left( {{\hat{j}}} \right) \) after the i-th discrete time step:

$$\begin{aligned}&{d_j}\left( i \right) {\mathrm{= min}}\left\| {X\left( {j + i} \right) - X\left( {{\hat{j}} + i} \right) } \right\| ,\nonumber \\&\qquad \qquad i = 1,2, \cdots ,min\left( {M - j,M - {\hat{j}}} \right) . \end{aligned}$$
(46)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Song, W. & Zio, E. Generalized Cauchy difference iterative forecasting model for wind speed based on fractal time series. Nonlinear Dyn 103, 759–773 (2021). https://doi.org/10.1007/s11071-020-06150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06150-z

Keywords

Mathematics Subject Classification

Navigation