Skip to main content
Log in

Dynamical analysis of dendritic mixed bursting within the pre-Bötzinger complex

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A special class of neurons within the brainstem pre-Bötzinger complex (pre-BötC) may perform diversified electrical actions, which are closely related to the generation of mammalian respiratory rhythm. Researches on electrical activities of those neurons are of highly interest and have been conducted both experimentally and computationally. One interesting firing activity observed experimentally is the so-called mixed bursting (MB), which exhibits more than one type of short bursts within a periodic cycle and is believed to be generated by the joint action of persistent sodium current and intracellular calcium oscillations. In this paper, based on Park and Rubin’s model for single pre-BötC neuron, we numerically find that MB can also be driven by the sole action of intracellular calcium oscillations originating from the dendrite. We call such MB the dendritic mixed bursting (DMB). We show several special DMBs one after another and interpret their dynamical mechanisms via fast–slow decomposition and bifurcation analysis. In addition, we show how calcium-activated nonspecific cationic conductance (\(g_{\text{ CAN }}\)) affects certain DMB activities. This work may provide significant insights for comprehending compound kinetics scenarios within the pre-BötC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Smith, J.C., Ellenberger, H.H., Ballanyi, K., et al.: Pre-Bötzinger complex: a brain stem region that may generate respiratory rhythm in mammals. Science 254, 726–729 (1991)

    Article  Google Scholar 

  2. Smith, J.C., Butera, R.J., Koshiya, N., et al.: Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. Respir. Physiol. 122, 131–147 (2000)

    Article  Google Scholar 

  3. Wang, J., Lu, B., Liu, S.Q., et al.: Bursting types and bifurcation analysis in the pre-Bötzinger complex respiratory rhythm neuron. Int. J. Bifurc. Chaos 27, 1750010 (2017)

    Article  MATH  Google Scholar 

  4. Ramirez, J.M., Quellmalz, U.J., Richter, D.W.: Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice. J. Physiol. 491, 799–812 (1996)

    Article  Google Scholar 

  5. Rubin, J.E., Shevtsova, N.A., Ermentrout, G.B., et al.: Multiple rhythmic states in a model of the respiratory central pattern generator. J. Neurophysiol. 101, 2146–2165 (2009)

    Article  Google Scholar 

  6. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tijana, L., Lakhmi, J., John, P., et al.: Nonlinear dynamics and chaos methods in neurodynamics and complex data analysis. Nonlinear Dyn. 56, 23–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zheng, S., Han, X.J., Bi, Q.S.: Bifurcations and fast–slow behaviors in a hyperchaotic dynamical system. Commun. Nonlinear Sci. 16, 1998–2005 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Teka, W., Tabak, J., Vo, T., et al.: The dynamics underlying pseudo-plateau bursting in a pituitary cell model. J. Math. Neurosci. 1, 12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, X.H., Bi, Q.S.: Bursting oscillation in CO oxidation with small excitation and the enveloping slow–fast analysis method. Chin. Phys. B 21, 100–106 (2012)

    Google Scholar 

  11. Gu, H.G.: Different bifurcation scenarios of neural firing patterns observed in the biological experiment on identical pacemakers. Int. J. Bifurc. Chaos 23, 1350195 (2013)

    Article  MathSciNet  Google Scholar 

  12. Wang, C.N., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, L.L., Jia, Y., Ge, M.Y., et al.: Inverse stochastic resonance in Hodgkin–Huxley neural system driven by Gaussian and non-Gaussian colored noises. Nonlinear Dyn. 100, 877–889 (2020)

    Article  Google Scholar 

  14. Xia, Y.B., Zhang, Z.D., Bi, Q.S.: Relaxation oscillations and the mechanism in a periodically excited vector field with pitchfork–Hopf bifurcation. Nonlinear Dyn. 101, 37–51 (2020)

    Article  Google Scholar 

  15. Butera, R.J., John, R., Smith, J.C.: Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82, 382–397 (1999)

    Article  Google Scholar 

  16. Butera, R.J., John, R., Smith, J.C.: Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. J. Neurophysiol. 82, 398–415 (1999)

    Article  Google Scholar 

  17. Toporikova, N., Butera, R.J.: Two types of independent bursting mechanisms in inspiratory neurons: an integrative model. J. Comput. Neurosci. 30, 515–528 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dunmyre, J.R., Del Negro, C.A., Rubin, J.E.: Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. J. Comput. Neurosci. 31, 305–328 (2011)

    Article  MATH  Google Scholar 

  19. Park, C., Rubin, J.E.: Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Bötzinger complex neurons. J. Comput. Neurosci. 34, 345–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rinzel, J.: Excitation dynamics: insights from simplified membrane models. Fed. Proc. 44, 2944–2946 (1986)

    Google Scholar 

  21. Gu, H.G., Pan, B.B., Chen, G.R., et al.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78, 391–407 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lü, Z.S., Zhao, C., Zhang, B.Z.: Multitime scale study of bursting activities in the pre-Bötzinger complex. Int. J. Bifurc. Chaos 27, 1750172 (2017)

    Article  Google Scholar 

  23. Zhan, F.B., Liu, S.Q., Zhang, X.H.: Mixed-mode oscillations and bifurcation analysis in a pituitary model. Nonlinear Dyn. 94, 807–826 (2018)

    Article  Google Scholar 

  24. Ma, J., Zhang, G., Hayat, T., et al.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95, 1585–1598 (2018)

    Article  Google Scholar 

  25. Lv, M., Wang, C.N., Ren, G.D., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  26. Wang, Z.J., Duan, L.X., Cao, Q.Y.: Multi-stability involved mixed bursting within the coupled pre-Bötzinger complex neurons. Chin. Phys. B 27, 070502 (2019)

    Article  Google Scholar 

  27. Baldemir, H., Avitabile, D., Tsaneva-Atanasova, K.: Pseudo-plateau bursting and mixed-mode oscillations in a model of developing inner hair cells. Commun. Nonlinear Sci. 80, 104979 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Z.Q., Hao, L.J.: Dynamics of different compound bursting in two phantom bursting mechanism models. Sci. China Technol. Sci. 57, 885–892 (2014)

    Article  Google Scholar 

  29. Duan, L.X., Yuan, D.D., Chen, X., et al.: Transition mechanisms of bursting in a two-cell network model of the pre-Bötzinger complex. Int. J. Bifurc. Chaos 25, 1550069 (2015)

    Article  MATH  Google Scholar 

  30. Bertram, R., Rubin, J.E.: Multi-timescale systems and fast–slow analysis. Math. Biosci. 287, 105–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, Y.Y., Rubin, J.E.: Timescales and mechanisms of sigh-like bursting and spiking in models of rhythmic respiratory neurons. J. Math. Neurosci. 7, 3 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rubin, J.E., Krauskopf, B., Osinga, H.M.: Natural extension of fast–slow decomposition for dynamical systems. Phys. Rev. E 97, 012215 (2018)

    Article  MathSciNet  Google Scholar 

  33. Del Negro, C.A., Hayes, J.A., Rekling, J.C.: Dendritic calcium activity precedes inspiratory bursts in pre-Bötzinger complex neurons. J. Neurosci. 31, 1017–1022 (2011)

    Article  Google Scholar 

  34. Lieske, S.P., Thoby-Brisson, M., Telgkamp, P., et al.: Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nat. Neurosci. 3, 600–607 (2000)

    Article  Google Scholar 

  35. Tryba, A.K., Pena, F., Lieske, S.P., et al.: Differential modulation of neural network and pacemaker activity underlying eupnea and sigh-breathing activities. J. Neurophysiol. 99, 2114–2125 (2008)

    Article  Google Scholar 

  36. Wang, Y.Y., Rubin, J.E.: Multiple timescale mixed bursting dynamics in a respiratory neuron model. J. Comput. Neurosci. 41, 1–24 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lü, Z.S., Chen, L.N., Duan, L.X.: Bifurcation analysis of mixed bursting in the pre-Bötzinger complex. Appl. Math. Model. 67, 234–257 (2018)

    Article  MATH  Google Scholar 

  38. Wang, Y.Y., Rubin, J.E.: Complex bursting dynamics in an embryonic respiratory neuron model. Chaos 30, 043127 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Duan, L.X., Liang, T.T., et al.: Multi-time scale dynamics of mixed depolarization block bursting. Nonlinear Dyn. (in press)

  40. Ermentrout, B.: Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM Rev. 45, 150 (2002)

    MATH  Google Scholar 

  41. Viemari, J., Ramirez, J.: Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. J. Neurophysiol. 95, 2070–2082 (2006)

    Article  Google Scholar 

  42. Doi, A., Ramirez, J.: Neuromodulation and the orchestration of the respiratory rhythm. Respir. Physiol. Neurobiol. 164, 96–104 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11872003, 11772069), Cultivation Plan for “Yujie” Team of North China University of Technology (No. 107051360019XN137/002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuosheng Lü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 1, 2 and 3.

Table 3 Specific parameter values of ion conductances and [IP3] used in Sects. 4.1, 5 and 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, Z., Liu, M. & Duan, L. Dynamical analysis of dendritic mixed bursting within the pre-Bötzinger complex. Nonlinear Dyn 103, 897–912 (2021). https://doi.org/10.1007/s11071-020-06097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06097-1

Keywords

Navigation