Skip to main content
Log in

Adaptive fixed-time trajectory tracking control for Mars entry vehicle

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper develops a fixed-time trajectory tracking control scheme for Mars entry vehicle under uncertainty. First, a novel fixed-time nonsingular terminal sliding mode (FTNTSM) surface with bounded convergence time independent on the initial conditions is developed, which not only averts the singularity problem but also assures fast convergence. Second, based on the FTNTSM surface and adaptive technique, a continuous adaptive fixed-time nonsingular terminal sliding mode control (AFTNTSMC) method is proposed. Under the control scheme, the fixed-time convergence of tracking error is assured, and the chattering phenomenon is alleviated. Furthermore, by estimating the square of upper bound of the uncertainty, the designed AFTNTSMC method averts the use of boundary layer technique as imposed in most existing literature on adaptive fixed-time control. The effectiveness of the developed control approach is confirmed by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu, Z., Cui, P., Crassidis, J.: Design and optimization of navigation and guidance techniques for Mars pinpoint landing: review and prospect. Progress Aerosp. Sci. 94, 82–94 (2017)

    Article  Google Scholar 

  2. Lei, F., Xu, X., Li, T., Song, G.: Attitude tracking control for Mars entry vehicle via T-S model with time-varying input delay. Nonlinear Dyn. 85, 1749–1764 (2016)

    Article  Google Scholar 

  3. Manrique, J.: Advances in Spacecraft Atmospheric Entry Guidance. University of California, Irvine (2010)

    Google Scholar 

  4. Kluever, C.: Entry guidance performance for Mars precision landing. J. Guidance Control Dyn. 31(6), 1537–1544 (2008)

    Article  Google Scholar 

  5. Gifty, R., Rajeev, U., Lalithambika, V., et al.: Entry guidance with smooth drag planning and non-linear tracking. Control Eng. Pract. 63, 24–33 (2017)

    Article  Google Scholar 

  6. Zheng, Y., Cui, H., Ai, Y.: Constrained numerical predictor-corrector guidance for Mars precision landing. J. Guidance Control Dyn. 40(1), 179–187 (2017)

    Article  Google Scholar 

  7. Zhao, Z., Yang, J., Li, S., et al.: Drag-based composite super-twisting sliding mode control law design for Mars entry guidance. Adv. Space Res. 57(12), 2508–2518 (2016)

    Article  Google Scholar 

  8. Yang, L., Liu, X., Chen, W., Zhao, H.: Autonomous entry guidance using linear pseudospectral model predictive control. Aerosp. Sci. Technol. 80, 38–55 (2018)

    Article  Google Scholar 

  9. Li, S., Jiang, X.: RBF neural network based second-order sliding mode guidance for Mars entry under uncertainties. Aerosp. Sci. Technol. 43, 226–235 (2015)

    Article  Google Scholar 

  10. Edwards, C., Shtessel, Y.: Enhanced continuous higher order sliding mode control with adaptation. J. Frankl. Inst. 356(9), 4773–4784 (2019)

    Article  MathSciNet  Google Scholar 

  11. Harshavarthini, S., Sakthivel, R., Ahn, C.: Finite-time reliable attitude tracking control design for nonlinear quadrotor model with actuator faults. Nonlinear Dyn. 96, 2681–2692 (2019)

    Article  Google Scholar 

  12. Zou, A., Kumar, A., Ruiter, A.: Finite-time spacecraft attitude control under input magnitude and rate saturation. Nonlinear Dyn. 99, 2201–2217 (2020)

    Article  Google Scholar 

  13. Zhao, Z., Yang, J., Li, S., et al.: Finite-time super-twisting sliding mode control for Mars entry trajectory tracking. J. Frankl. Inst. 352(11), 5226–5248 (2015)

    Article  MathSciNet  Google Scholar 

  14. Yu, X., Li, P., Zhang, Y.: The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles. IEEE Trans. Ind. Electron. 65(5), 4135–4144 (2017)

    Article  Google Scholar 

  15. Shen, G., Xia, Y., Zhang, J., Cui, B.: Finite-time trajectory tracking control for entry guidance. Int. J. Robust Nonlinear Control 28, 5895–5914 (2018)

    Article  MathSciNet  Google Scholar 

  16. Shen, G., Xia, Y., Ma, D., Zhang, J.: Adaptive sliding-mode control for Mars entry trajectory tracking with finite-time convergence. Int. J. Robust Nonlinear Control 29, 1249–1264 (2019)

    Article  MathSciNet  Google Scholar 

  17. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73, 229–244 (2013)

    Article  MathSciNet  Google Scholar 

  18. Chen, M., Yu, J.: Disturbance observer-based adaptive sliding mode control for near-space vehicles. Nonlinear Dyn. 82, 1671–1682 (2015)

    Article  MathSciNet  Google Scholar 

  19. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  Google Scholar 

  20. Jiang, B., Hu, Q., Friswell, M.: Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness. IEEE Trans. Aerosp. Electron. Syst. 52(4), 1576–1586 (2016)

    Article  Google Scholar 

  21. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)

    Article  MathSciNet  Google Scholar 

  22. Defoort, M., Polyakov, A., Demesure, G., et al.: Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics. IET Control Theory Appl. 9(14), 2165–2170 (2015)

    Article  MathSciNet  Google Scholar 

  23. Ni, J., Liu, L., Liu, C., et al.: Fixed-time leader-following consensus for second-order multiagent systems with input delay. IEEE Trans. Ind. Electron. 64(11), 8635–8646 (2017)

    Article  Google Scholar 

  24. Song, G., Shi, P., Wang, S., Pan, J.: A new finite-time cooperative control algorithm for uncertain multi-agent systems. Int. J. Syst. Sci. 50(5), 1006–1016 (2019)

    Article  MathSciNet  Google Scholar 

  25. Chen, Q., Xie, S., Sun, M., He, X.: Adaptive non-singular fixed-time attitude stabilization of uncertain spacecraft. IEEE Trans. Aerosp. Electron. Syst. 54(6), 2937–2950 (2018)

    Article  Google Scholar 

  26. Gao, J., Fu, Z., Zhang, S.: Adaptive fixed-time attitude tracking control for rigid spacecraft with actuator faults. IEEE Trans. Ind. Electron. 66(9), 7141–7149 (2019)

    Article  Google Scholar 

  27. Jiang, B., Hu, Q., Friswell, M.: Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IEEE Trans. Control Syst. Technol. 24(5), 1892–1898 (2016)

    Article  Google Scholar 

  28. Huang, Y., Jia, Y.: Adaptive fixed-time relative position tracking and attitude synchronization control for non-cooperative target spacecraft fly-around mission. J. Frankl. Inst. 354(18), 8461–8489 (2017)

    Article  MathSciNet  Google Scholar 

  29. Huang, Y., Jia, Y.: Adaptive fixed-time six-DOF tracking control for noncooperative spacecraft fly-around mission. IEEE Trans. Control Syst. Technol. 27(4), 1796–1804 (2019)

    Article  Google Scholar 

  30. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  Google Scholar 

  31. Wang, L., Chai, T., Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009)

    Article  Google Scholar 

  32. Yang, H., Ye, D.: Adaptive fixed-time bipartite tracking consensus control for unknown nonlinear multi-agent systems: an information classification mechanism. Inf. Sci. 459, 238–254 (2018)

    Article  MathSciNet  Google Scholar 

  33. Wang, Y., Song, Y., Krstic, M., et al.: Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures. Automatica 63, 374–383 (2016)

    Article  MathSciNet  Google Scholar 

  34. Cui, B., Xia, Y., Liu, K., et al.: Finite-time tracking control for a class of uncertain strict-feedback nonlinear systems with state constraints: a smooth control approach. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2019.2959016

    Article  MathSciNet  Google Scholar 

  35. Nojavanzadeh, D., Badamchizadeh, M.: Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators. IET Control Theory Appl. 10(13), 1565–1572 (2016)

    Article  MathSciNet  Google Scholar 

  36. Xiang, X., Liu, C., Su, H., et al.: On decentralized adaptive full-order sliding mode control of multiple UAVs. ISA Trans. 71, 196–205 (2017)

    Article  Google Scholar 

  37. Shtessel, Y., Shkolnikov, I., Levant, A.: Guidance and control of missile interceptor using second-order sliding modes. IEEE Trans. Aerosp. Electron. Syst. 45(1), 110–124 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation Projects of International Cooperation and Exchanges under Grant 61720106010, the Beijing Natural Science Foundation under Grant 4161001 and Z170039, the National Key Research and Development Program of China under Grant 2018YFB1003700, the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant 61621063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Proof of Lemma 6

Since \(0< \tau =p_1/q_1 < 1\), \(p_1\) and \(q_1\) are positive odds, it follows that \(\left| {x - {\tilde{x}}} \right| \left| {{x^{\frac{p_1}{q_1}}} - {{{\tilde{x}}}^{\frac{p_1}{q_1}}}} \right| = \left( {x - {\tilde{x}}} \right) \left( {{x^{\frac{p_1}{q_1}}} - {{{\tilde{x}}}^{\frac{p_1}{q_1}}}} \right) \). Based on Lemma 3, it can be obtained that

$$\begin{aligned} {\tilde{x}}{{\hat{x}}^{\frac{p_1}{q_1}}}&\le \frac{1}{{1 + p_1/q_1}}\left[ {{x^{1 + p_1/q_1}} - {{(x - {\tilde{x}})}^{1 + p_1/q_1}}} \right] \nonumber \\&\le \frac{q_1}{{p_1 + q_1}}\Big ({x^{\frac{{p_1 + q_1}}{q_1}}} - {2^{\frac{p_1}{q_1} - 1}} ( {x - {\tilde{x}}} ) \Big ( {{x^{\frac{p_1}{q_1}}} - {{{\tilde{x}}}^{\frac{p_1}{q_1}}}} \Big ) \Big ) \nonumber \\&= \frac{q_1}{{p_1 + q_1}}\Big ({x^{\frac{{p_1 + q_1}}{q_1}}} - {2^{\frac{p_1}{q_1} - 1}}{x^{\frac{{p_1 + q_1}}{q_1}}} + {2^{\frac{p_1}{q_1} - 1}}x{{{\tilde{x}}}^{\frac{p_1}{q_1}}}\nonumber \\&\quad + {2^{\frac{p_1}{q_1} - 1}}{\tilde{x}}{x^{\frac{p_1}{q_1}}} - {2^{\frac{p_1}{q_1} - 1}}{{{\tilde{x}}}^{\frac{{p_1 + q_1}}{q_1}}}\Big ). \end{aligned}$$
(35)

In view of Lemma 5, inequality (35) is transformed into

$$\begin{aligned}&{\tilde{x}}{{\hat{x}}^{\frac{p_1}{q_1}}} \le \frac{q_1}{{p_1 + q_1}} \Big ({x^{\frac{{p_1 + q_1}}{q_1}}} - {2^{\frac{p_1}{q_1} - 1}}{x^{\frac{{p_1 + q_1}}{q_1}}} - {2^{\frac{p_1}{q_1} - 1}}{{{\tilde{x}}}^{\frac{{p_1 + q_1}}{q_1}}} \nonumber \\&\quad + \,\frac{q_1}{{p_1 + q_1}}{\left( {2^{\frac{p_1}{q_1} - 1}}{\tilde{x}}\right) ^{\frac{{p_1 + q_1}}{q_1}}} + \frac{q_1}{{p_1 + q_1}}{\left( {2^{ - \frac{{{{(p_1 - q_1)}^2}}}{{{q_1^2}}}}}x\right) ^{\frac{{p_1 + q_1}}{q_1}}}\nonumber \\&\quad +\, \frac{p_1}{{p_1 + q_1}}{x^{\frac{{p_1 + q_1}}{q_1}}} + \frac{p_1}{{p_1 + q_1}}{\left( {2^{\frac{p_1}{q_1} - 1}}{\tilde{x}}\right) ^{\frac{{p_1 + q_1}}{q_1}}} \Big ) \nonumber \\&= \frac{q_1}{{p_1 + q_1}}\left[ {{{\left( {2^{\frac{p_1}{q_1} - 1}}\right) }^{\frac{{p_1 + q_1}}{q_1}}} - {2^{\frac{p_1}{q_1} - 1}}} \right] {{{\tilde{x}}}^{\frac{p_1}{q_1} + 1}} + \frac{{\bar{l}}_2}{2}{x^{\frac{p_1}{q_1} + 1}} \nonumber \\&= - \frac{{\bar{l}}_1}{2}{{{\tilde{x}}}^{\tau + 1}} + \frac{{\bar{l}}_2}{2}{x^{\tau + 1}}. \end{aligned}$$
(36)

where \({\bar{l}}_2=\frac{2}{{\tau + 1}}\left[ {1 - {2^{\tau - 1}} + \frac{\tau }{{\tau + 1}} + \frac{1}{{\tau + 1}}{2^{ - {{(\tau - 1)}^2}(\tau + 1)}}} \right] \) and \({\bar{l}}_1= \frac{2}{{\tau + 1}}\left[ {{2^{\tau - 1}}- {2^{(\tau - 1)(\tau + 1)}}} \right] \). Moreover, it is noting that \((\tau - 1) - (\tau - 1)(\tau + 1) > 0\) and \(1-2^{\tau -1}>0\), thus both \({\bar{l}}_1\) and \({\bar{l}}_2\) are positive constants. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, G., Xia, Y., Zhang, J. et al. Adaptive fixed-time trajectory tracking control for Mars entry vehicle . Nonlinear Dyn 102, 2687–2698 (2020). https://doi.org/10.1007/s11071-020-06088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06088-2

Keywords

Navigation