Skip to main content
Log in

Damage modeling and detection for a tree network using fractional-order calculus

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Large networks are increasingly common in engineered systems, and therefore, monitoring their operating conditions is increasingly important. This paper proposes a model-based frequency-domain damage detection method for an infinitely large self-similar network. The first aim is to exactly model the overall frequency response for any specific damage case of that network, which we show has an explicit multiplicative relation to the undamaged transfer function. Then, leveraging that knowledge from modeling, this paper also proposes an algorithm to identify damaged components within that network as well as quantifies their respective damage amounts given a noisy measurement for that network’s overall frequency response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahmed, E., Elgazzar, A.: On fractional order differential equations model for nonlocal epidemics. Physica A 379(2), 607–614 (2007)

    Article  MathSciNet  Google Scholar 

  2. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  3. Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: Mixed-integer programming: a progress report. In: The Sharpest Cut: The Impact of Manfred Padberg and His Work, pp. 309–325. SIAM (2004)

  4. Borino, G., Di Paola, M., Zingales, M.: A non-local model of fractional heat conduction in rigid bodies. Eur. Phys. J. Spec. Top. 193(1), 173–184 (2011)

    Article  Google Scholar 

  5. Bouc, R.: A mathematical model for hysteresis. Acta Acust. United Acust. 24(1), 16–25 (1971)

    Google Scholar 

  6. Brincker, R., Zhang, L., Andersen, P.: Modal identification of output-only systems using frequency domain decomposition. Smart Mater. Struct. 10(3), 441 (2001)

    Article  Google Scholar 

  7. Cao, Y., Ren, W.: Distributed formation control for fractional-order systems: dynamic interaction and absolute/relative damping. Syst. Control Lett. 59(3–4), 233–240 (2010)

    Article  MathSciNet  Google Scholar 

  8. Chatzi, E.N., Smyth, A.W.: The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Struct. Control Health Monit.: Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct. 16(1), 99–123 (2009)

    Article  Google Scholar 

  9. Chen, Y., Petras, I., Xue, D.: Fractional order control—a tutorial. In: 2009 American Control Conference, pp. 1397–1411 (2009). https://doi.org/10.1109/ACC.2009.5160719

  10. Cottone, G., Di Paola, M., Zingales, M.: Fractional mechanical model for the dynamics of non-local continuum. In: Advances in Numerical Methods, pp. 389–423. Springer, Berlin (2009)

  11. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  12. Di Paola, M., Failla, G., Zingales, M.: Physically-based approach to the mechanics of strong non-local linear elasticity theory. J. Elast. 97(2), 103–130 (2009)

    Article  MathSciNet  Google Scholar 

  13. Doehring, T.C., Freed, A.D., Carew, E.O., Vesely, I.: Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J. Biomech. Eng. (2005)

  14. Gabryś, E., Rybaczuk, M., Kędzia, A.: Fractal models of circulatory system: symmetrical and asymmetrical approach comparison. Chaos Solitons Fract. 24(3), 707–715 (2005)

    Article  Google Scholar 

  15. Goodwine, B.: Modeling a multi-robot system with fractional-order differential equations. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1763–1768. IEEE (2014)

  16. Heymans, N., Bauwens, J.C.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta 33(3), 210–219 (1994)

    Article  Google Scholar 

  17. Ionescu, C.M., Machado, J.T., De Keyser, R.: Modeling of the lung impedance using a fractional-order ladder network with constant phase elements. IEEE Trans. Biomed. Circuits Syst. 5(1), 83–89 (2010)

    Article  Google Scholar 

  18. Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8(5), 620–627 (1985)

    Article  Google Scholar 

  19. Kelly, J.F., McGough, R.J.: Fractal ladder models and power law wave equations. J. Acoust. Soc. Am. 126(4), 2072–2081 (2009)

    Article  Google Scholar 

  20. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.: Health monitoring of civil infrastructures using wireless sensor networks. In: Proceedings of the 6th International Conference on Information Processing in Sensor Networks, pp. 254–263 (2007)

  21. Leyden, K., Goodwine, B.: Using fractional-order differential equations for health monitoring of a system of cooperating robots. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 366–371. IEEE (2016)

  22. Leyden, K., Goodwine, B.: Fractional-order system identification for health monitoring. Nonlinear Dyn. 92(3), 1317–1334 (2018)

    Article  Google Scholar 

  23. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Redding (2006)

  24. Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 173. W.H. Freeman, New York (1983)

    Google Scholar 

  25. Masters, B.R.: Fractal analysis of the vascular tree in the human retina. Annu. Rev. Biomed. Eng. 6, 427–452 (2004)

    Article  Google Scholar 

  26. Mayes, J., Sen, M.: Approximation of potential-driven flow dynamics in large-scale self-similar tree networks. Proc. R. Soc. A: Math. Phys. Eng. Sci. 467(2134), 2810–2824 (2011)

    Article  MathSciNet  Google Scholar 

  27. Murray, R.M.: Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control 129(5), 571–583 (2007)

    Article  Google Scholar 

  28. Peeters, B., De Roeck, G.: Stochastic system identification for operational modal analysis: a review. J. Dyn. Syst. Meas. Control 123(4), 659–667 (2001)

    Article  Google Scholar 

  29. Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control. Springer, Berlin (2008)

    Book  Google Scholar 

  30. Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27(2), 71–82 (2007)

    Article  Google Scholar 

  31. Ren, W., Moore, K.L., Chen, Y.: High-order and model reference consensus algorithms in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control (2007)

  32. Roemer, M.J., Kacprzynski, G.J.: Advanced diagnostics and prognostics for gas turbine engine risk assessment. In: 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484), vol. 6, pp. 345–353. IEEE (2000)

  33. Rytter, A.: Vibrational based inspection of civil engineering structures. Ph.D. thesis, Aalborg University (1993)

  34. Sikorska, J., Hodkiewicz, M., Ma, L.: Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst. Signal Process. 25(5), 1803–1836 (2011)

    Article  Google Scholar 

  35. Sun, W., Li, Y., Li, C., Chen, Y.: Convergence speed of a fractional order consensus algorithm over undirected scale-free networks. Asian J. Control 13(6), 936–946 (2011)

    Article  MathSciNet  Google Scholar 

  36. Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dyn. 93(3), 1647–1669 (2018). https://doi.org/10.1007/s11071-018-4282-2

    Article  Google Scholar 

  37. Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method. Nonlinear Dyn. 98(4), 2879–2901 (2019). https://doi.org/10.1007/s11071-019-05022-5

    Article  MATH  Google Scholar 

  38. Wen, Y.K.: Method for random vibration of hysteretic systems. J. Eng. Mech. Div. 102(2), 249–263 (1976)

    Google Scholar 

  39. Worden, K., Farrar, C.R., Haywood, J., Todd, M.: A review of nonlinear dynamics applications to structural health monitoring. Struct. Control Health Monit.: Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct. 15(4), 540–567 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Ni.

Ethics declarations

Conflicts of interest

Xiangyu Ni has worked in MathWorks for 3 months. The authors have no other conflicts of interest in addition to that.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The support of the US National Science Foundation under Grant No. CMMI 1826079 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Goodwine, B. Damage modeling and detection for a tree network using fractional-order calculus. Nonlinear Dyn 101, 875–891 (2020). https://doi.org/10.1007/s11071-020-05847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05847-5

Keywords

Navigation