Skip to main content
Log in

Influence of fourth-order dispersion on the Anderson localization

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Anderson localization, which consists in the absence of wave dispersion due to disorder, brought to the field of optics and matter waves has greatly improved our understanding of fundamental processes, such as transport and multiple dispersion of light. In this paper, we investigate the existence of Anderson localization in the interplay of a standard group velocity dispersion and a fourth-order dispersion term in the nonlinear Schrödinger (NLS) equation in the presence of a quasiperiodic linear coefficient. We employ a variational approach with a Gaussian ansatz to describe the center of the localized state, while the tails are studied by direct numerical simulations of the NLS equation. These two approaches are important to distinguish the region of the solution presenting exponential decay, which is the main signature of the Anderson localization. The existence of Anderson localization has been confirmed by numerical simulations even when the system presents a small defocusing nonlinearity. In this sense, we reported how the fourth-order dispersion effect changes the existence region of the localized state by changing the critical values for the transition between the localized and delocalized states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958). https://doi.org/10.1103/PhysRev.109.1492

    Article  Google Scholar 

  2. Albada, M.P.V., Lagendijk, A.: Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55(24), 2692–2695 (1985). https://doi.org/10.1103/PhysRevLett.55.2692

    Article  Google Scholar 

  3. Wiersma, D.S., Bartolini, P., Lagendijk, A., Righini, R.: Localization of light in a disordered medium. Nature 390(6661), 671–673 (1997). https://doi.org/10.1038/37757

    Article  Google Scholar 

  4. Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78(19), 195125 (2008). https://doi.org/10.1103/PhysRevB.78.195125

    Article  Google Scholar 

  5. Roati, G., D’Errico, C., Fallani, L., Fattori, M., Fort, C., Zaccanti, M., Modugno, G., Modugno, M., Inguscio, M.: Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453(7197), 895–898 (2008). https://doi.org/10.1038/nature07071

    Article  Google Scholar 

  6. Billy, J., Josse, V., Zuo, Z., Bernard, A., Hambrecht, B., Lugan, P., Clément, D., Sanchez-Palencia, L., Bouyer, P., Aspect, A.: Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453(7197), 891–894 (2008). https://doi.org/10.1038/nature07000

    Article  Google Scholar 

  7. Dalichaouch, R., Armstrong, J.P., Schultz, S., Platzman, P.M., McCall, S.L.: Microwave localization by two-dimensional random scattering. Nature 354(6348), 53–55 (1991). https://doi.org/10.1038/354053a0

    Article  Google Scholar 

  8. Weaver, R.: Anderson localization of ultrasound. Wave Motion 12(2), 129–142 (1990). https://doi.org/10.1016/0165-2125(90)90034-2

    Article  Google Scholar 

  9. Akkermans, E., Montambaux, G.: Mesoscopic Physics of Electrons and Photons. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511618833

    Book  MATH  Google Scholar 

  10. Lye, J.E., Fallani, L., Modugno, M., Wiersma, D.S., Fort, C., Inguscio, M.: Bose–Einstein condensate in a random potential. Phys. Rev. Lett. 95(7), 070401 (2005). https://doi.org/10.1103/PhysRevLett.95.070401

    Article  Google Scholar 

  11. Goodman, J.W.: Speckle Phenomena in Optics: Theory and Applications. Roberts & Company, Atlanta (2007)

    Google Scholar 

  12. Fallani, L., Lye, J.E., Guarrera, V., Fort, C., Inguscio, M.: Ultracold atoms in a disordered crystal of light: towards a Bose glass. Phys. Rev. Lett. 98(13), 130404 (2007). https://doi.org/10.1103/PhysRevLett.98.130404

    Article  Google Scholar 

  13. Brandes, T., Kettemann, S.: Anderson Localization and Its Ramifications: Disorder, Phase Coherence, and Electron Correlations. Lecture Notes in Physics. Springer, Berlin (2003)

    Book  Google Scholar 

  14. Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic Press, San Diego (2012)

    MATH  Google Scholar 

  15. Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Elsevier, Amsterdam (2003)

    Google Scholar 

  16. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463–512 (1999). https://doi.org/10.1103/RevModPhys.71.463

    Article  Google Scholar 

  17. Biondini, G., El, G., Hoefer, M., Miller, P.: Dispersive hydrodynamics: preface. Phys. D Nonlinear Phenom. 333, 1–5 (2016). https://doi.org/10.1016/j.physd.2016.07.002

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, Y., Adhikari, S.K.: Matter-wave localization in a random potential. Phys. Rev. A 82(1), 013631 (2010). https://doi.org/10.1103/PhysRevA.82.013631

    Article  Google Scholar 

  19. Muruganandam, P., Kumar, R.K., Adhikari, S.K.: Localization of a dipolar Bose–Einstein condensate in a bichromatic optical lattice. J. Phys. B At. Mol. Opt. Phys. 43(20), 205305 (2010). https://doi.org/10.1088/0953-4075/43/20/205305

    Article  Google Scholar 

  20. Cheng, Y., Adhikari, S.K.: Localization of a Bose–Fermi mixture in a bichromatic optical lattice. Phys. Rev. A 84(2), 023632 (2011). https://doi.org/10.1103/PhysRevA.84.023632

    Article  Google Scholar 

  21. Cheng, Y., Adhikari, S.K.: Matter-wave localization in a weakly perturbed optical lattice. Phys. Rev. A 84(5), 053634 (2011). https://doi.org/10.1103/PhysRevA.84.053634

    Article  Google Scholar 

  22. Cheng, Y., Adhikari, S.K.: Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice. Phys. Rev. A 83(2), 023620 (2011). https://doi.org/10.1103/PhysRevA.83.023620

    Article  Google Scholar 

  23. Cardoso, W., Avelar, A., Bazeia, D.: Anderson localization of matter waves in chaotic potentials. Nonlinear Anal. Real World Appl. 13(2), 755–763 (2012). https://doi.org/10.1016/j.nonrwa.2011.08.014

    Article  MathSciNet  MATH  Google Scholar 

  24. Cheng, Y., Tang, G., Adhikari, S.K.: Localization of a spin-orbit-coupled Bose–Einstein condensate in a bichromatic optical lattice. Phys. Rev. A 89(6), 063602 (2014). https://doi.org/10.1103/PhysRevA.89.063602

    Article  Google Scholar 

  25. Xi, K.T., Li, J., Shi, D.N.: Localization of a two-component Bose–Einstein condensate in a one-dimensional random potential. Phys. B Condens. Matter 459, 6–11 (2015). https://doi.org/10.1016/j.physb.2014.11.068

    Article  Google Scholar 

  26. Cardoso, W.B., Leão, S.A., Avelar, A.T.: Anderson localization in the quintic nonlinear Schrödinger equation. Opt. Quantum Electron. 48(8), 388 (2016). https://doi.org/10.1007/s11082-016-0658-z

    Article  Google Scholar 

  27. Cardoso, W.B.: Localization of optical pulses in guided wave structures with only fourth order dispersion. Phys. Lett. A 383(28), 125898 (2019). https://doi.org/10.1016/j.physleta.2019.125898

    Article  MathSciNet  Google Scholar 

  28. Salasnich, L., Malomed, B.A.: Localized modes in dense repulsive and attractive Bose–Einstein condensates with spin-orbit and Rabi couplings. Phys. Rev. A 87(6), 063625 (2013). https://doi.org/10.1103/PhysRevA.87.063625

    Article  Google Scholar 

  29. Salasnich, L., Cardoso, W.B., Malomed, B.A.: Localized modes in quasi-two-dimensional Bose–Einstein condensates with spin-orbit and Rabi couplings. Phys. Rev. A 90(3), 033629 (2014). https://doi.org/10.1103/PhysRevA.90.033629

    Article  Google Scholar 

  30. Yang, J.: Nonlinear waves in integrable and nonintegrable systems. Soc. Ind. Appl. Math. (2010). https://doi.org/10.1137/1.9780898719680

    Article  MATH  Google Scholar 

  31. Cardoso, W.B., Teixeira, R.M.P.: Scattering of solitons in binary Bose–Einstein condensates with spin-orbit and Rabi couplings. Nonlinear Dyn. 96(2), 1147–1167 (2019). https://doi.org/10.1007/s11071-019-04846-5

    Article  Google Scholar 

  32. Blanco-Redondo, A., de Sterke, C.M., Sipe, J., Krauss, T.F., Eggleton, B.J., Husko, C.: Pure-quartic solitons. Nat. Commun. 7(1), 10427 (2016). https://doi.org/10.1038/ncomms10427

    Article  Google Scholar 

  33. Lo, C.W., Stefani, A., de Sterke, C.M., Blanco-Redondo, A.: Analysis and design of fibers for pure-quartic solitons. Opt. Express 26(6), 7786 (2018). https://doi.org/10.1364/OE.26.007786

    Article  Google Scholar 

  34. Höök, A., Karlsson, M.: Ultrashort solitons at the minimum-dispersion wavelength: effects of fourth-order dispersion. Opt. Lett. 18(17), 1388 (1993). https://doi.org/10.1364/OL.18.001388

    Article  Google Scholar 

  35. Karlsson, M., Höök, A.: Soliton-like pulses governed by fourth order dispersion in optical fibers. Opt. Commun. 104(4–6), 303–307 (1994). https://doi.org/10.1016/0030-4018(94)90560-6

    Article  Google Scholar 

  36. Akhmediev, N., Buryak, A., Karlsson, M.: Radiationless optical solitons with oscillating tails. Opt. Commun. 110(5–6), 540–544 (1994). https://doi.org/10.1016/0030-4018(94)90246-1

    Article  Google Scholar 

  37. Akhmediev, N.N., Buryak, A.V.: Interactions of solitons with oscillating tails. Opt. Commun. 121(4–6), 109–114 (1995). https://doi.org/10.1016/0030-4018(95)00548-7

    Article  Google Scholar 

  38. Zakharov, V.E., Kuznetsov, E.A.: Optical solitons and quasisolitons. J. Exp. Theor. Phys. 86(5), 1035–1046 (1998). https://doi.org/10.1134/1.558551

    Article  Google Scholar 

  39. Cai, L.Y., Wang, X., Wang, L., Li, M., Liu, Y., Shi, Y.Y.: Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Nonlinear Dyn. 90(3), 2221–2230 (2017). https://doi.org/10.1007/s11071-017-3797-2

    Article  Google Scholar 

  40. Sun, W.R.: Nonlinear localized wave conversions for a higher-order nonlinear Schrödinger–Maxwell–Bloch system with quintic terms in an erbium-doped fiber. Nonlinear Dyn. 89(1), 383–390 (2017). https://doi.org/10.1007/s11071-017-3460-y

    Article  Google Scholar 

  41. Yong, X., Wang, G., Li, W., Huang, Y., Gao, J.: On the Darboux transformation of a generalized inhomogeneous higher-order nonlinear Schrödinger equation. Nonlinear Dyn. 87(1), 75–82 (2017). https://doi.org/10.1007/s11071-016-3026-4

    Article  Google Scholar 

  42. Kruglov, V.I., Harvey, J.D.: Solitary waves in optical fibers governed by higher-order dispersion. Phys. Rev. A 98(6), 063811 (2018). https://doi.org/10.1103/PhysRevA.98.063811

    Article  Google Scholar 

  43. Yin, H.M., Tian, B., Zhang, C.R., Du, X.X., Zhao, X.C.: Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system. Nonlinear Dyn. 97(1), 843–852 (2019). https://doi.org/10.1007/s11071-019-05016-3

    Article  MATH  Google Scholar 

  44. Nikolić, S.N., Ashour, O.A., Aleksić, N.B., Belić, M.R., Chin, S.A.: Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds. Nonlinear Dyn. 95(4), 2855–2865 (2019). https://doi.org/10.1007/s11071-018-4726-8

    Article  Google Scholar 

  45. Hu, C.C., Tian, B., Yin, H.M., Zhang, C.R., Zhang, Z.: Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3+1)-dimensional generalized K. Comput. Math. Appl. 78(1), 166–177 (2019). https://doi.org/10.1016/j.camwa.2019.02.026

    Article  MathSciNet  Google Scholar 

  46. Gao, X.Y.: Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019). https://doi.org/10.1016/j.aml.2018.11.020

    Article  MathSciNet  MATH  Google Scholar 

  47. Du, Z., Tian, B., Chai, H.P., Zhao, X.H.: Dark-bright semi-rational solitons and breathers for a higher-order coupled nonlinear Schrödinger system in an optical fiber. Appl. Math. Lett. 102, 106110 (2020). https://doi.org/10.1016/j.aml.2019.106110

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, M., Tian, B., Sun, Y., Zhang, Z.: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles. Comput. Math. Appl. 79(3), 576–587 (2020). https://doi.org/10.1016/j.camwa.2019.07.006

    Article  MathSciNet  Google Scholar 

  49. Gao, X.Y., Guo, Y.J., Shan, W.R.: Water-wave symbolic computation for the Earth, Enceladus and Titan: the higher-order Boussinesq–Burgers system, auto- and non-auto-Bäcklund transformations. Appl. Math. Lett. 104, 106170 (2020). https://doi.org/10.1016/j.aml.2019.106170

    Article  MathSciNet  MATH  Google Scholar 

  50. Palacios, S., Fernández-Díaz, J.: Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion. Opt. Commun. 178(4–6), 457–460 (2000). https://doi.org/10.1016/S0030-4018(00)00666-0

    Article  Google Scholar 

  51. Hosseini, K., Samadani, F., Kumar, D., Faridi, M.: New optical solitons of cubic-quartic nonlinear Schrödinger equation. Optik (Stuttg). 157, 1101–1105 (2018). https://doi.org/10.1016/j.ijleo.2017.11.124

    Article  Google Scholar 

  52. Biswas, A., Kara, A.H., Ullah, M.Z., Zhou, Q., Triki, H., Belic, M.: Conservation laws for cubic-quartic optical solitons in Kerr and power law media. Optik (Stuttg). 145, 650–654 (2017). https://doi.org/10.1016/j.ijleo.2017.08.047

    Article  Google Scholar 

  53. Staliunas, K., Herrero, R., de Valcárcel, G.J.: Subdiffractive band-edge solitons in Bose–Einstein condensates in periodic potentials. Phys. Rev. E 73(6), 065603 (2006). https://doi.org/10.1103/PhysRevE.73.065603

    Article  Google Scholar 

  54. Sanchez-Palencia, L., Lewenstein, M.: Disordered quantum gases under control. Nat. Phys. 6(2), 87–95 (2010). https://doi.org/10.1038/nphys1507

    Article  Google Scholar 

  55. Karpman, V.I.: Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations. Phys. Rev. E 53(2), R1336–R1339 (1996). https://doi.org/10.1103/PhysRevE.53.R1336

    Article  Google Scholar 

  56. Saha, M., Sarma, A.K.: Solitary wave solutions and modulation instability analysis of the nonlinear Schrodinger equation with higher order dispersion and nonlinear terms. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2420–2425 (2013). https://doi.org/10.1016/j.cnsns.2012.12.028

    Article  MathSciNet  MATH  Google Scholar 

  57. Ankiewicz, A., Wang, Y., Wabnitz, S., Akhmediev, N.: Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phys. Rev. E 89(1), 012907 (2014). https://doi.org/10.1103/PhysRevE.89.012907

    Article  Google Scholar 

  58. Dai, C.Q., Fan, Y., Wang, Y.Y.: Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials. Nonlinear Dyn. 98(1), 489–499 (2019). https://doi.org/10.1007/s11071-019-05206-z

    Article  MATH  Google Scholar 

  59. Ma, Y.L.: Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 97(1), 95–105 (2019). https://doi.org/10.1007/s11071-019-04956-0

    Article  MATH  Google Scholar 

  60. Chen, S.S., Tian, B., Liu, L., Yuan, Y.Q., Du, X.X.: Breathers, multi-peak solitons, breather-to-soliton transitions and modulation instability of the variable-coefficient fourth-order nonlinear Schrödinger system for an inhomogeneous optical fiber. Chin. J. Phys. 62, 274–283 (2019). https://doi.org/10.1016/j.cjph.2019.09.021

    Article  Google Scholar 

  61. Wazwaz, A.M., Xu, G.Q.: Bright, dark and Gaussons optical solutions for fourth-order Schrödinger equations with cubic-quintic and logarithmic nonlinearities. Optik (Stuttg). 202, 163564 (2020). https://doi.org/10.1016/j.ijleo.2019.163564

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support of the Brazilian agencies CNPq (\(\#\)304073/2016-4, \(\#\)306065/2019-3 & \(\#\)425718/2018-2), CAPES, and FAPEG (PRONEM \(\#\)201710267000540, PRONEX \(\#\)201710267000503). This work was also performed as part of the Brazilian National Institute of Science and Technology (INCT) for Quantum Information (\(\#\)465469/2014-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley B. Cardoso.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, M.C.P., Cardoso, W.B. Influence of fourth-order dispersion on the Anderson localization. Nonlinear Dyn 101, 611–618 (2020). https://doi.org/10.1007/s11071-020-05788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05788-z

Keywords

Navigation