Skip to main content

Localized States and Dynamics in the Nonlinear Schrödinger/Gross-Pitaevskii Equation

  • Chapter
Dynamics of Partial Differential Equations

Part of the book series: Frontiers in Applied Dynamical Systems: Reviews and Tutorials ((FIADS,volume 3))

Abstract

Nonlinear dispersive waves are wave phenomena resulting from the interacting effects of nonlinearity and dispersion. Dispersion refers to the property that waves of different wavelengths travel at different velocities. This property may, for example, be due to the material properties of the medium, e.g. chromatic dispersion [1], or to the geometric arrangement of material constituents, e.g. a periodic medium with Floquet-Bloch band dispersion [3]. Nonlinearity distorts the shape of a localized structure or creates amplitude dependent non-uniformities in phase. This may concentrate or localize energy in a region of space (attractive/focusing nonlinearity) or tend to expel energy from compact sets (repulsive/defocusing nonlinearity). In electromagnetics, nonlinearities may arise due to the intensity dependence of dielectric parameters (e.g., Kerr effect [1]). Physical phenomena in which the effects of both dispersion and nonlinearity play a role are ubiquitous. Some examples are: (a) long waves of small amplitude at a water–air interface [114], (b) a nearly mono-chromatic laser beam propagating through air, glass, or water [36], (c) light-pulses propagating through optical fiber waveguides [1], and (d) the macroscopic dynamics of weakly correlated quantum particles in a Bose-Einstein condensate; see, for example, [30, 49, 88]. Interest in nonlinear dispersive waves and their interaction with nonhomogeneous media ranges from Fundamental to Applied Science with great promise in engineering/technological applications due to major advances in materials science and micro- and nano-structure fabrication techniques; see, for example, [109].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This work is supported in part by U.S. NSF grant DMS-10-08855 and DMS-14-12560.

  2. 2.

    \(\Gamma _{0}(z,z^{{\ast}})\) assumed to be strictly positive, is non-negative by the following:

    $$\displaystyle\begin{array}{rcl} & & \mathfrak{I}\ [-\Delta + V -\omega _{\star } - i0]^{-1} = \frac{1} {2i}\ \lim _{\delta \downarrow 0}\ \left (\ [-\Delta + V -\omega _{\star } - i\delta ]^{-1} - [-\Delta + V -\omega _{\star } + i\delta ]^{-1}\ \right ), {}\\ & & =\ \ \pi \ \delta \left (-\Delta + V -\omega _{\star }\right ),\ \ \mathrm{where}\ \omega _{\star } \in \sigma _{cont}(-\Delta + V ). {}\\ \end{array}$$

    Note: \(\mathfrak{I}\ [-\Delta + V -\omega _{\star } - i0]^{-1}\) projects onto the generalized mode at energy \(\omega _{\star } \in \sigma _{cont}(-\Delta + V ).\)

References

  1. G. P. Agrawal. Nonlinear Fiber Optics. Optics and Photonics. Academic Press, 2nd edition, 1995.

    Google Scholar 

  2. W.H. Aschbacher, J. Fröhlich, G.M. Graf, K. Schnee, and M. Troyer. Symmetry breaking regime in the nonlinear Hartree equation. J. Math. Phys., 43:3879–3891, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. W. Ashcroft and N. D. Mermin. Solid State Physics. Saunders College Publishing, Harcourt Brace Publishers, 1976.

    Google Scholar 

  4. D. Bambusi and C. Cuccagna. On dispersion of small energy solutions of the nonlinear Klein Gordon equation with a potential. Am. J. Math., 133(5):1421–1468, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Berestycki and P.-L. Lions. Nonlinear scalar field equations,. Existence of a ground state. Arch. Rat. Mech. Anal., 1983.

    Google Scholar 

  6. J. Bourgain. Global Solutions of Nonlinear Schrödinger Equations, volume 46 of Colloquium Publications. AMS, 1999.

    Google Scholar 

  7. V. S. Buslaev and G. Perel’man. On the stability of solitary waves for nonlinear Schrödinger equations, volume 164 of Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI, 1995.

    Google Scholar 

  8. V. S. Buslaev and G. S. Perelman. Scattering for the nonlinear Schrödinger equation: states that are close to a soliton. St. Petersburg Math. J., 4(6):1111–1142, 1993.

    MathSciNet  Google Scholar 

  9. V. S. Buslaev and C. Sulem. On asymptotic stability of solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(3):419–475, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Cai, D.W. McLaughlin, and K.T.R. McLaughlin. The nonlinear Schrödinger equation as both a PDE and a dynamical system. In Handbook of Dynamical Systems, volume 2, pages 599–675. North-Holland, 2002.

    Google Scholar 

  11. X. D. Cao and B. A. Malomed. Soliton-defect collisions in the nonlinear schrodinger equation. Physics Letters A, 206:177–182, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Cazenave and P.L. Lions. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys., 85:549–561, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Atom-Photon Interactions - Basic Processes and Applications. Wiley-Interscience, 1992.

    Google Scholar 

  14. O. Costin and A. Soffer. Resonance theory for Schrödinger operators. Comm. Math. Phys., 224:133–152, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Courant and D. Hilbert. Methods of Mathematical Physics. Interscience Publishers, Inc., New York, N.Y., 1953.

    Google Scholar 

  16. S. Cuccagna. The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states. Comm. Math. Phys., 305(2):279–331, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Cuccagna. On the Darboux and Birkhoff steps in the asymptotic stability of solitons. Rend. Istit. Mat. Univ. Trieste, 44:197–257, 2012.

    MathSciNet  MATH  Google Scholar 

  18. S. Cuccagna, E. Kirr, and D. Pelinovsky. Parametric resonance of ground states in the nonlinear Schrödinger equation. J. Differential Equations, 220(1):85–120, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Cuccagna and J. Marzuola. On instability for the quintic nonlinear schrödinger equation of some approximate periodic solutions. Indiana J. Math., 61(6):2053–2083, 2013.

    MathSciNet  Google Scholar 

  20. S. Cuccagna and D. Pelinovsky. The asymptotic stability of solitons in the cubic NLS equation on the line. Applicable Analysis, 93(791–822), 2014.

    Google Scholar 

  21. K. Datchen and J. Holmer. Fast soliton scattering by attractive delta impurities. Commun. Partial Differential Equations, 34:1074–1113, 2009.

    Article  Google Scholar 

  22. P. Deift and J. Park. Long-time asymptotics for solutions of the NLS equation with a delta potential and even initial data. Int. Math. Res. Not. IMRN, 24:5505–5624, 2011.

    MathSciNet  Google Scholar 

  23. P.A. Deift, A.R. Its, and X. Zhou. Long-time asymptotics for integrable nonlinear wave equations,. In Important developments in soliton theory, Springer Ser. Nonlinear Dynam., pages 181–204. Springer, Berlin, 1993.

    Google Scholar 

  24. P.A. Deift and X. Zhou. Long-time asymptotics for solutions of the nls equation with initialdata in weighted sobolev spaces. Comm. Pure Appl. Math., 56:1029–1077, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Dohnal, D. Pelinovsky, and G. Schneider. Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable potential. J. Nonlin. Sci., 19:95–131, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Dohnal and H. Uecker. Coupled-mode equations and gap solitons for he 2d Gross-Pitaevskii equation with a non-separable periodic potential. Physica D, 238:860–879, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Duchêne, J.L. Marzuola, and M.I. Weinstein. Wave operator bounds for one-dimensional schrödinger operators with singular potentials and applications. J. Math. Phys., 52:013505, 2011.

    Article  MathSciNet  Google Scholar 

  28. V. Duchene, I. Vukicevic, and M.I. Weinstein. Oscillatory and localized perturbations of periodic structures and the bifurcation of defect modes. http://arxiv.org/abs/1407.8403, 2014.

  29. V. Duchene, I. Vukicevic, and M.I. Weinstein. Homogenized description of defect modes in periodic structures with localized defects. Communications in Mathematical Sciences, 2015.

    Google Scholar 

  30. L. Erdös, B. Schlein, and H.T. Yau. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math., 59(12):1659–1741, 2007.

    Google Scholar 

  31. C. L. Fefferman and M. I. Weinstein. Wave packets in honeycomb lattice structures and two-dimensional Dirac equations. Commun. Math. Phys., 326:251–286, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  32. C.L. Fefferman, J.P. Lee-Thorp, and M.I. Weinstein. Topologically protected states in one-dimensional continuous systems. Proc. Nat. Acad. Sci., 111(24):8759–8763, 2014.

    Article  MathSciNet  Google Scholar 

  33. C.L. Fefferman, J.P. Lee-Thorp, and M.I. Weinstein. Topologically protected states in one-dimensional systems. J. American Math. Soc., http://arxiv-web.arxiv.org/abs/1405.4569, 2014.

  34. C.L. Fefferman and M.I. Weinstein. Waves in honeycomb structures. In D. Lannes, editor, Proceedings of Journees Equations aux derivees partialles, Biarretz, 3-7 juin 2012, volume GDR 243 4 (CNRS), – http://arxiv.org/abs/1212.6684, 2012.

  35. C.L. Fefferman, J.P. Lee-Thorp, and M.I. Weinstein. Edge states in honeycomb structures, http://arxiv.org/abs/1506.06111, submitted.

  36. G. Fibich. Some modern aspects of self-focusing theory. In Y.R. Shen R.W. Boyd, S.G. Lukishova, editor, Self-Focusing: Past and Present. Springer, 2009.

    Google Scholar 

  37. G. Fibich. The Nonlinear Schrödinger Equation: Singularity Solutions and Optical Collapse, volume 192 of Applied Mathematical Sciences. Springer-Verlag, 2014.

    Google Scholar 

  38. J. Fröhlich, S. Gustafson, B. L. G. Jonsson, and I. M. Sigal. Solitary wave dynamics in an external potential. Comm. Math. Phys., 250(3):613–642, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  39. Z. Gang. Perturbation expansion and Nth order Fermi golden rule of the nonlinear Schrödinger equations. J. Math. Phys., 48(5):053509, 23, 2007.

    Google Scholar 

  40. Z. Gang and I. M. Sigal. On soliton dynamics in nonlinear Schrödinger equations. Geom. Funct. Anal., 16(6):1377–1390, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  41. Z. Gang and I.M. Sigal. Relaxation of solitons in nonlinear Schrödinger equations with potential. Adv. Math., 216(2):443–490, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  42. Z. Gang and M.I. Weinstein. Dynamics of nonlinear Schrödinger – Gross-Pitaevskii equations; mass transfer in systems with solitons and degenerate neutral modes. Analysis and PDE, 1(3), 2008.

    Google Scholar 

  43. Z. Gang and M.I. Weinstein. Equipartition of energy in Nonlinear Schrödinger / Gross-Pitaevskii Equations. Applied Math. Research Express (AMRX), 2011.

    Google Scholar 

  44. B. Gidas, W.-M. Ni, and L. Nirenberg. Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68(3):209–243, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Golubitsky, I. Stewart, and D. Schaefer. Singularities and Groups in Bifurcation Theory - Volume 2. Springer-Verlag, 1988.

    Google Scholar 

  46. R.H. Goodman, P.J. Holmes, and M.I. Weinstein. Strong NLS soliton-defect interactions. Physica D, 161:21–44, 2004.

    Article  MathSciNet  Google Scholar 

  47. R.H. Goodman, J. Marzuola, and M.I. Weinstein. Self-trapping and josephson tunneling solutions to the nonlinear Schrödinger – Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems - A, 35(1):225–246, 2015.

    Article  MathSciNet  Google Scholar 

  48. R.H. Goodman, R.E. Slusher, and M.I. Weinstein. Stopping light on a defect. J. Opt. Soc. B, 19(7):1635–1652, 2002.

    Article  Google Scholar 

  49. M. Grillakis, M. Machedon, and D. Margetis. Second order corrections to weakly interacting bosons, i. Communications in Mathematical Physics, 294(1):273–301, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  50. M.G. Grillakis. Analysis of the linearization around a critical point of an infinite-dimensional hamiltonian system. Comm. Pure Appl. Math., 43(3):299–333, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  51. M.G. Grillakis, J. Shatah, and W.A. Strauss. Stability theory of solitary waves in the presence of symmetry. I. J. Func. Anal., 74(1):160–197, 1987.

    Google Scholar 

  52. E. M. Harrell. Double wells. Comm. Math. Phys., 75:239–261, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  53. P. D. Hislop and I. M. Sigal. Introduction to Spectral Theory: With applications to Schrödinger Operators, volume 113 of Applied Mathematical Sciences. Springer, 1996.

    Google Scholar 

  54. J. Holmer, J. Marzuola, and M. Zworski. Fast soliton scattering by delta impurities. Comm. Math. Phys., 274:349–367, 2007.

    Article  MathSciNet  Google Scholar 

  55. J. Holmer, J. Marzuola, and M. Zworski. Soliton splitting by delta impurities. J. Nonlinear Sci., 7:349–367, 2007.

    Article  MathSciNet  Google Scholar 

  56. J. Holmer and M. Zworski. Slow soliton interaction with delta impurities. J. Mod. Dyn., 1(4):689–718, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Holmer and M. Zworski. Soliton interaction with slowly varying potentials. IMRN Internat. Math. Res. Notices, 2008.

    Google Scholar 

  58. J. Holmer and M. Zworski. Breathing patterns in nonlinear relaxation. Nonlinearity, 22:1259–1301, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  59. B. Ilan and M. I. Weinstein. Band edge solitons, nonlinear Schroedinger / Gross-Pitaevskii equations and effective media. Multiscale Model. and Simul., 8(4):1055–1101, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  60. R.K. Jackson and M.I. Weinstein. Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation. J. Stat. Phys., 116:881–905, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Jenkinson and M.I. Weinstein. On-site and off-site solitary waves of the discrete nonlinear Schroedinger equation in multiple dimensions. http://arxiv.org/abs/1405.3892, 2014.

  62. C.K.R.T. Jones. An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation. J. Diff. Eqns, 71(1):34–62, 1988.

    Article  MATH  Google Scholar 

  63. T. Kapitula, P. G. Kevrekidis, and Z. Chen. Three is a crowd: Solitary waves in photorefractive media with three potential wells. SIAM Journal of Applied Dynamical Systems, 5:598–633, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  64. T. Kato. On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Theor., 46:113–129, 1987.

    MATH  Google Scholar 

  65. C. Kenig, The concentration-compactness rigidity method for critical dispersive and wave equations. In Nonlinear Partial Differential Equations. Springer Basel pp. 117–149, 2012.

    Google Scholar 

  66. E. Kirr, P. G. Kevrekidis, and D. E. Pelinovsky. Symmetry breaking in the nonlinear Schrödinger equation with a symmetric potential. Comm. Math. Phys., 308(3):795–844, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  67. E. Kirr and O. Mizrak. Asymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases. J. Func. Anal., 257(12):3691–3747, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  68. E. Kirr and M.I. Weinstein. Parametrically excited Hamiltonian partial differential equations. SIAM. J. Math. Anal., 33(1):16–52, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  69. E. Kirr and M.I. Weinstein. Metastable states in parametrically excited multimode Hamiltonian systems. Commun. Math. Phys., 236(2):335–372, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  70. E. Kirr and M.I. Weinstein. Diffusion of power in randomly perturbed hamiltonian partial differential equations. Comm. Math. Phys., 255(2):293–328, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  71. E. Kirr and A. Zarnescu. On the asymptotic stability of bound states in 2D cubic Schrödinger equation. Comm. Math. Phys., 272(2):443–468, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  72. E. Kirr and A. Zarnescu. Asymptotic stability of ground states in 2D nonlinear Schrödinger equation including subcritical cases. J. Differential Equations, 247(3):710–735, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  73. E.W. Kirr, P. G. Kevrekidis, E. Shlizerman, and M.I. Weinstein. Symmetry breaking in the nonlinear Schrödinger / Gross-Pitaevskii equation. SIAM J. Math. Anal., 40(2):566–604, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  74. W. Kirsch and B. Simon. Comparison theorems for the gap of Schrödinger operators. J. Func. Anal., 75:396–410, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  75. M. Kowalczyk, Y. Martel and C. Munoz, Kink dynamics in the ϕ 4 model: asymptotic stability for odd perturbations in the energy space, arxiv.org/pdf/1506.07420.pdf

  76. M. K. Kwong. Uniqueness of positive solutions of \(\Delta u - u + u^{p} = 0\) in R n. Arch. Rat. Mech. Anal., 105:243–266, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  77. H. Lamb. On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium. Proc. London Math. Soc., 32:208–211, 1900.

    Article  MathSciNet  MATH  Google Scholar 

  78. E.H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. AMS, Providence, Rhode Island, 2nd edition, 1997.

    Google Scholar 

  79. P.-L. Lions. The concentration compactness principle in the calculus of variations i,ii. Anal. I.H.P. Anal. Nonlin., 1:109–145, 223–283, 1984.

    Google Scholar 

  80. D. Mandelik, Y. Lahini, and Y. Silberberg. Nonlinearly induced relaxation to the ground state in a two-level system. Phys. Rev. Lett., 95:073902, 2005.

    Article  Google Scholar 

  81. Y. Martel and F. Merle. Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Rat. Mech. Anal., 157:219–254, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  82. J. Marzuola and M.I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete Contin. Dyn. Syst. A, 28(4):1505–1554, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  83. F. Merle and P. Raphael. On the universality of blow-up profile for the l 2 critical nonlinear Schrödinger equation. Invent. Math., 156(565–672), 2004.

    Google Scholar 

  84. L. Nirenberg. Topics in Nonlinear Functional Analysis, volume 6 of Courant Institute Lecture Notes. American Mathematical Society, Providence, Rhode Island, 1974.

    Google Scholar 

  85. B. Osting and M.I. Weinstein. Emergence of periodic structure from maximizing the lifetime of a bound state coupled to radiation. SIAM J. Multiscale Model. and Simul., 9(2):654–685, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  86. D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar. Bifurcations and stability of gap solitons in periodic potentials. Phys. Rev. E, 70:036618, 2004.

    Article  MathSciNet  Google Scholar 

  87. C.A. Pillet and C.E. Wayne. Invariant manifolds for a class of dispersive Hamiltonian partial differential equations. J. Diff. Eqns, 1997.

    Google Scholar 

  88. L.P. Pitaevskii and S. Stringari. Bose-Einstein Condensation, volume 116 of International Series of Monographs on Physics. Clarendon Press, 2003.

    Google Scholar 

  89. M. Reed and B. Simon. Modern Methods of Mathematical Physics, IV. Academic Press, 1978.

    Google Scholar 

  90. H. A. Rose and M. I. Weinstein. On the bound states of the nonlinear Schrödinger equation with a linear potential. Physica D, 30:207–218, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  91. Z. Shi and J. Yang. Solitary waves bifurcated from Bloch-band edges in two-dimensional periodic media. Phys. Rev. E, 75:056602, 2007.

    Article  Google Scholar 

  92. E. Shlizerman and V. Rom-Kedar. Classification of solutions of the forced periodic nonlinear Schrödinger equation. Nonlinearity, 23:2183, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  93. Y. Sivan, G. Fibich, B. Ilan, and M.I. Weinstein. Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons. Phys. Rev. E, 78:046602, 2008.

    Article  MathSciNet  Google Scholar 

  94. A. Soffer and M. I. Weinstein. Nonautonomous Hamiltonians. J. Stat. Phys., 93, 1998.

    Google Scholar 

  95. A. Soffer and M. I. Weinstein. Time dependent resonance theory. Geom. Func. Anal., 8, 1998.

    Google Scholar 

  96. A. Soffer and M.I. Weinstein. Ionization and scattering for short lived potentials. Lett. Math. Phys., 48, 1999.

    Google Scholar 

  97. A. Soffer and M.I. Weinstein. Resonances, radiation damping, and instability of Hamiltonian nonlinear waves. Inventiones Mathematicae, 136:9–74, 1999.

    Article  MathSciNet  Google Scholar 

  98. A. Soffer and M.I. Weinstein. Selection of the ground state for nonlinear Schrödinger equations. Reviews in Mathematical Physics, 16(8):977–1071, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  99. A. Soffer and M.I. Weinstein. Theory of nonlinear dispersive waves and selection of the ground state. Phys. Rev. Lett., 95:213905, 2005.

    Article  Google Scholar 

  100. C. Sparber. Effective mass theorems for NLS equations. SIAM J. Appl. Math., 66:820–842, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  101. W.A. Strauss. Existence of solitary waves in higher dimensions. Comm. Math. Phys., 55:149–162, 1979.

    Article  Google Scholar 

  102. C. Sulem and P.L. Sulem. The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, volume 139 of Series in Mathematical Science. Springer-Verlag, 1999.

    Google Scholar 

  103. T. Tao. Nonlinear Dispersive Equations: Local and Global Analysis. Number 106 in CBMS Regional Conference Series. AMS, 2006.

    Google Scholar 

  104. T. Tao. A global compact attractor for high-dimensional defocusing non-linear Schrödinger equations with potential. Dyn. PDE, 5:101–116, 2008.

    MATH  Google Scholar 

  105. T. Tao. Why are solitons stable? Bulletin and the AMS, 46(1):1–33, 2009.

    Article  MATH  Google Scholar 

  106. T.-P. Tsai and H.-T. Yau. Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions. Comm. Pure Appl. Math., 55(2):153–216, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  107. T.-P. Tsai and H.-T. Yau. Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data. Adv. Theor. Math. Phys., 6(1):107–139, 2002.

    MathSciNet  MATH  Google Scholar 

  108. M. Vakhitov and A. Kolokolov. Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quant. Elec., 16:783, 1973.

    Article  Google Scholar 

  109. M. I. Weinstein. Resonance problems in photonics. In D-Y Hsieh, M Zhang, and W Sun, editors, Frontiers of Applied Mathematics- Proceedings of the 2nd International Symposium. World Scientific, 2007.

    Google Scholar 

  110. M.I. Weinstein. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys., 87:567–576, 1983.

    Article  MATH  Google Scholar 

  111. M.I. Weinstein. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal., 16:472–490, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  112. M.I. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math., 39:51–68, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  113. V. Weisskopf and E. Wigner. Berechnung der naturlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys., 63:54–73, 1930.

    Article  MATH  Google Scholar 

  114. G.B. Whitham. Linear and Nonlinear Waves. Wiley-Interscience, 1974.

    Google Scholar 

Download references

Acknowledgements

The author would like to thank J. Marzuola and E. Shlizerman for stimulating discussions and helpful comments on this chapter. He also wishes to thank the referees for their careful reading and suggested improvements. This work was supported, in part, by NSF Grants DMS-1008855 and DMS-1412560, and a grant from the Simons Foundation (#376319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Weinstein .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weinstein, M.I. (2015). Localized States and Dynamics in the Nonlinear Schrödinger/Gross-Pitaevskii Equation. In: Dynamics of Partial Differential Equations. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-19935-1_2

Download citation

Publish with us

Policies and ethics