Skip to main content
Log in

Dynamic modeling and trajectory tracking control method of segmented linkage cable-driven hyper-redundant robot

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics modeling and trajectory optimization of a segmented linkage cable-driven hyper-redundant robot (SL-CDHRR) become more challenging, since there are multiple couplings between the active cables, passive cables, joints and end-effector. To deal with these problems, this paper proposes a dynamic modeling and trajectory tracking control methods for such type of CDHRR, i.e., SL-CDHRR. First, the multi-coupling kinematics equation (i.e., cable-joint-end) of the hyper-redundant robot is derived. Then, according to the transmission characteristics of the hybrid active/passive segmented linkage, the dynamic equation of series–parallel coupling is derived. It consists of parallel-active dynamics and series-passive dynamics. Furthermore, using the tension of active cables and the pose of the end-effector as optimization indicators, a trajectory tracking framework was constructed by the combination of dynamic feedforward control and PD control. The multi-objective particle swarm optimization method is used to achieve the simultaneous optimization of the energy indicator and control accuracy indicator during the trajectory tracking process. Finally, a MATLAB/SimMechanics co-simulation system is built, and the proposed methods are verified by the built co-simulation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Hannan, M., Walker, I.: Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J. Robot. Syst. 20(2), 45–63 (2003)

    Article  MATH  Google Scholar 

  2. Huang, P., Zhang, F., Chen, L., et al.: A review of space tether in new applications. Nonlinear Dyn. 94(5), 1–19 (2018)

    Article  Google Scholar 

  3. Zhang, F., Huang, P.: A novel underactuated control scheme for deployment/retrieval of space tethered system. Nonlinear Dyn. 95(12), 3465–3476 (2019)

    Article  Google Scholar 

  4. Liu, T., Mu, Z., Wang, H., Xu, W., Li, Y.: A cable-driven redundant spatial manipulator with improved stiffness and load capacity. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6628–6633. Madrid, Spain (2018)

  5. Liu, T., Mu, Z., Xu, W., et al.: Improved mechanical design and simplified motion planning of hybrid active and passive cable-driven segmented manipulator with coupled motion. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5978–5983. Macau, China (2019)

  6. Goldman, R., Bajo, A., Maclachlan, L., et al.: Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention. IEEE Trans. Biomed. Eng. 60(4), 918–925 (2013)

    Article  Google Scholar 

  7. Jabbari, H.A., Yoon, J.: Robust trajectory tracking control of cable-driven parallel robots. Nonlinear Dyn. 89, 2769–2784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Babaghasabha, R., Khosravi, M.A., Taghirad, H.: Adaptive robust control of fully constrained cable robots: singular perturbation approach. Nonlinear Dyn. 85, 607–620 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buckingham, R., Graham, A.: Nuclear snake-arm robots. Ind. Robot. 39(1), 6–11 (2012)

    Article  Google Scholar 

  10. Kelasidi, E., Liljebäck, P., Pettersen, K.Y., Gravdahl, J.T.: Line-of-sight guidance for path following control of underwater snake robots: theory and experiments. IEEE Trans. Robot. 33(3), 610–628 (2017)

    Article  Google Scholar 

  11. Palmer, D., Axinte, D.: Active uncoiling and feeding of a continuum arm robot. Robot. Comput. Integr. Manuf. 56, 107–116 (2019)

    Article  Google Scholar 

  12. Qi, P., Qiu, C., Liu, H., et al.: A novel continuum manipulator design using serially connected double-layer planar springs. IEEE/ASME Trans. Mechatron. 21(3), 1281–1292 (2016)

    Article  Google Scholar 

  13. Li, Z., Du, R.: Design and analysis of a bio-inspired wire-driven multi-section flexible robot. Int. J. Adv. Robot. Syst. 10(10), 209–220 (2013)

    Article  Google Scholar 

  14. Xu, W., Liu, T., Li, Y.: Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator. IEEE/ASME Trans. Mechatron. 23(4), 1693–1704 (2018)

    Article  Google Scholar 

  15. Ozgoren, M.K.: Optimal inverse kinematic solutions for redundant manipulators by using analytical methods to minimize position and velocity measures. ASME J. Mech. Robot. 5(3), 031009 (2013)

    Article  Google Scholar 

  16. Yin, F., Wang, Y., Yang, Y.: Inverse kinematics solution for robot manipulator based on neural network under joint subspace. Int. J. Comput. Commun. Control 7(3), 459–472 (2012)

    Google Scholar 

  17. Seraji, H.: Configuration control of redundant manipulators: theory and implementation. IEEE Trans. Robot. Autom. 5, 472–490 (1986)

    Article  Google Scholar 

  18. Song, S., Li, Z., Meng, M., et al.: Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic bézier curves. IEEE Sens. J. 15(11), 6326–6334 (2015)

    Article  Google Scholar 

  19. Song, S., Li, Z., Yu, H., et al.: Shape reconstruction for wire-driven flexible robots based on Bézier curve and electromagnetic positioning. Mechatronics 29, 28–35 (2015)

    Article  Google Scholar 

  20. Isaksson, M., Gosselin, C., Marlow, K.: An introduction to utilising the redundancy of a kinematically redundant parallel manipulator to operate a gripper. Mech. Mach. Theory 101, 50–59 (2016)

    Article  Google Scholar 

  21. Gravagne, I., Walker, I.: Properties of minimum infinity-norm optimization applied to kinematically redundant robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 152–160. Victoria, Canada (1998)

  22. Chirikjian, G., Burdick, J.: A modal approach to hyper-redundant manipulator kinematics. IEEE Trans. Robot. Autom. 10(3), 343–354 (1994)

    Article  Google Scholar 

  23. Agrawal, S., Li, S., Annapragada, M.: Hyper-redundant planar manipulators: motion planning with discrete modal summation procedure. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1581–1586. San Diego, CA, USA (1994)

  24. Samer, Y., Mahmoud, M., Haider, A.: Geometrical approach of planar hyper-redundant manipulators: inverse kinematics, path planning and workspace. Simul. Model. Pract. Theory. 19(1), 406–422 (2011)

    Article  Google Scholar 

  25. Ananthanarayanan, H., Ordóñez, R.: Real-time inverse kinematics of (2n + 1) dof hyper-redundant manipulator arm via a combined numerical and analytical approach. Mech. Mach. Theory 91, 209–226 (2015)

    Article  Google Scholar 

  26. Chang, N., Jung, H., Son, J., et al.: A modular control scheme for hyper-redundant robots. Int. J. Adv. Robot. Syst. 12, 1–7 (2015)

    Article  Google Scholar 

  27. Choi, D.G., Yi, B.J., Kim, W.K.: Design of a spring backbone micro endoscope, In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1815–1821, San Diego (2007)

  28. Godage, I., Wirz, R., Walker, I., Webster, R.: Accurate and efficient dynamics for variable-length continuum arms: a center of gravity approach. Soft Robot. 2(3), 96–106 (2015)

    Article  Google Scholar 

  29. Bogue, R.: Snake robots: a review of research, products and applications. Ind. Robot Int. J. 41(3), 253–258 (2014)

    Article  Google Scholar 

  30. Till, J., Aloi, V., Rucker, C.: Real-time dynamics of soft and continuum robots based on Cosserat rod models. Int. J. Robot. Res. 38(6), 723–746 (2019)

    Article  Google Scholar 

  31. Kraus, W., Kessler, M., Pott, A.: Pulley friction compensation for winch-integrated cable force measurement and verification on a cable-driven parallel robot, In: Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1627–1632. Seattle, WA, USA (2015)

  32. Potts, A., Da Cruz, J.: Optimal power loss motion planning in legged robots. Robotica 34(2), 423–448 (2016)

    Article  Google Scholar 

  33. Xu, W., Hu, Z., Yan, L., et al.: Modeling and planning of a space robot for capturing tumbling target by approaching the dynamic closest point. Multibody Syst. Dyn. 47(3), 203–241 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Housam, B., Kaddeche, S., Bellagi, A.: Solving two-dimensional chemical engineering problems using the Chebyshev orthogonal collocation technique. Comput. Appl. Eng. Educ. 24(1), 144–155 (2016)

    Article  Google Scholar 

  35. Kelly, M.: An introduction to trajectory optimization: how to do your own direct collocation. SIAM Rev. 59(4), 849–904 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pan, Y., Callejo, A., Bueno, J.L., Wehage, R.A., De Jalón, J.G.: Efficient and accurate modeling of rigid rods. Multibody Syst. Dyn. 40(1), 23–42 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, S., Da, X., Li, M., Han, T.: Adaptive backtracking search optimization algorithm with pattern search for numerical optimization. J. Syst. Eng. Electron. 27(2), 395–406 (2016)

    Article  Google Scholar 

  38. Mesbahi, J.T., Rizoug, N., Bartholomeüs, P., Sadoun, R., Khenfri, F., Le-Moigne, P.: Optimal energy management for a Li-ion battery/supercapacitor hybrid energy storage system based on a particle swarm optimization incorporating Nelder–Mead simplex approach. IEEE Trans. Intell. Veh. 2(2), 99–110 (2017)

    Google Scholar 

  39. Zakeri, E., Moeinkhah, H.: Digital control design for an IPMC actuator using adaptive optimal proportional integral plus method: simulation and experimental study. Sens. Actuators A 298, 111577 (2019)

    Article  Google Scholar 

  40. Zakeri, E., Moezi, S.A., Eghtesad, M.: Optimal interval type-2 fuzzy fractional order super twisting algorithm: a second order sliding mode controller for fully-actuated and under-actuated nonlinear systems. ISA Trans. 85, 13–32 (2019)

    Article  Google Scholar 

  41. Chen, C., Modares, H., Xie, K., Lewis, F.L., Wan, Y., Xie, S.: Reinforcement learning-based adaptive optimal exponential tracking control of linear systems with unknown dynamics. IEEE Trans. Autom. Control 64(11), 4423–4438 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant No. 2018YFB1304600), Guangdong Special Support Program (Grant No. 2017TX04X0071), the Shenzhen Municipal Basic Research Project for Natural Science Foundation (Grant Nos. JCYJ20190806143408992 and JCYJ20180507183610564), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110680) and China Postdoctoral Science Foundation (Grant No. 2019M651274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfu Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Xu, W., Yang, T. et al. Dynamic modeling and trajectory tracking control method of segmented linkage cable-driven hyper-redundant robot. Nonlinear Dyn 101, 233–253 (2020). https://doi.org/10.1007/s11071-020-05764-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05764-7

Keywords

Navigation