Skip to main content
Log in

Robust trajectory tracking control of cable-driven parallel robots

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a robust tracking controller is designed for fully constrained cable-driven parallel robots (CDPRs). One of the main challenges of controller design for this type of robotic systems is that the cables should always be in tension, where this tension is generally generated through an actuator mechanism coupled with gearboxes. On the other hand, the presence of parametric and nonparametric modeling uncertainties is a common problem in designing a precise nonlinear tracking controller for these manipulators. To deal with these problems, in this paper two separate controllers are designed for the subsystems of the robot. First, an adaptive robust feedback controller with an adaptive feedforward term is designed for the dynamics of the CDPR, constituting the outer-loop dynamics. This controller is robust with respect to the modeling uncertainties of the system. Furthermore, the output of this controller is bounded, which guarantees a saturated desired input for the inner-loop dynamics. Next, a high-gain robust controller is developed for the inner-loop dynamics, which include the actuator–gearbox model. The stability of the overall system is analyzed through a theory of cascaded systems, and it is shown that the system is uniformly practically asymptotically stable. Finally, the effectiveness of the proposed control scheme is validated through simulations on a 4-cable planar robot in both nominal and perturbed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Khosravi, M.A., Taghirad, H.: Robust PID control of fully-constrained cable driven parallel robots. Mechatronics 24(2), 87–97 (2014)

  2. Abbasnejad, G., Yoon, J., Lee, H.: Optimum kinematic design of a planar cable-driven parallel robot with wrench-closure gait trajectory. Mech. Mach. Theory 99, 1–18 (2016)

    Article  Google Scholar 

  3. Fang, S., Franitza, D., Torlo, M., Bekes, F., Hiller, M.: Motion control of a tendon-based parallel manipulator using optimal tension distribution. IEEE/ASME Trans. Mechatron. 9(3), 561–568 (2004)

    Article  Google Scholar 

  4. Kawamura, S., Kino, H., Won, C.: High-speed manipulation by using parallel wire-driven robots. Robotica 18(01), 13–21 (2000)

    Article  Google Scholar 

  5. Oh, S.-R., Ryu, J.-C., Agrawal, S.K.: Dynamics and control of a helicopter carrying a payload using a cable-suspended robot. J. Mech. Des. 128(5), 1113–1121 (2006)

    Article  Google Scholar 

  6. Lim, W.B., Yang, G., Yeo, S.H., Mustafa, S.K.: A generic force-closure analysis algorithm for cable-driven parallel manipulators. Mech. Mach. Theory 46(9), 1265–1275 (2011)

    Article  MATH  Google Scholar 

  7. Bosscher, P., Riechel, A.T., Ebert-Uphoff, I.: Wrench-feasible workspace generation for cable-driven robots. IEEE Trans. Robot. 22, 890–902 (2006)

    Article  Google Scholar 

  8. Gouttefarde, M., Gosselin, C.M.: Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms. IEEE Trans. Robot. 22(3), 434–445 (2006)

    Article  Google Scholar 

  9. Williams, R.L., Gallina, P., Vadia, J.: Planar translational cable-direct-driven robots. J. Robot. Syst. 20(3), 107–120 (2003)

    Article  MATH  Google Scholar 

  10. Laroche, E., Chellal, R., Cuvillon, L., Gangloff, J.: A preliminary study for \(\text{ H }_{\infty }\) control of parallel cable-driven manipulators. In: Pott, A., Bruckmann, T. (eds.) Cable-Driven Parallel Robots, pp. 353–369. Springer, Berlin (2013)

    Chapter  Google Scholar 

  11. Bayani, H., Masouleh, M.T., Kalhor, A.: An experimental study on the vision-based control and identification of planar cable-driven parallel robots. Robot. Auton. Syst. 75(Part B), 187–202 (2016)

    Article  Google Scholar 

  12. You, X., Chen, W., Yu, S., Wu, X.: Dynamic control of a 3-DOF cable-driven robot based on backstepping technique. In: 6th IEEE Conference on Industrial Electronics and Applications, pp. 1302–1307 (2011)

  13. Alp, A.B., Agrawal, S.K.: Cable suspended robots: feedback controllers with positive inputs. In: Proceedings of the 2002 American Control Conference, vol. 1, pp. 815–820 (2002)

  14. Zi, B., Duan, B., Du, J., Bao, H.: Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18(1), 1–12 (2008)

    Article  Google Scholar 

  15. Oh, S.-R., Agrawal, S.K.: A control Lyapunov approach for feedback control of cable-suspended robots. In: 2007 IEEE International Conference on Robotics and Automation, pp. 4544–4549 (2007)

  16. Babaghasabha, R., Khosravi, M.A., Taghirad, H.D.: Adaptive robust control of fully-constrained cable driven parallel robots. Mechatronics 25, 27–36 (2015)

    Article  MATH  Google Scholar 

  17. Babaghasabha, R., Khosravi, M.A., Taghirad, H.D.: Adaptive robust control of fully constrained cable robots: singular perturbation approach. Nonlinear Dyn. 85, 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diao, X., Ma, O.: Vibration analysis of cable-driven parallel manipulators. Multibody Syst. Dyn. 21(4), 347–360 (2009)

    Article  MATH  Google Scholar 

  19. Prete, A.D., Mansard, N., Ramos, O.E., Stasse, O., Nori, F.: Implementing torque control with high-ratio gear boxes and without joint-torque sensors. Int. J. Hum. Robot. 13(01), 1550044 (2016)

    Article  Google Scholar 

  20. Sadegh, N., Horowitz, R.: Stability and robustness analysis of a class of adaptive controllers for robotic manipulators. Int. J. Robot. Res. 9(3), 74–92 (1990)

    Article  Google Scholar 

  21. Zhang, F., Dawson, D.M., de Queiroz, M.S., Dixon, W.E., et al.: Global adaptive output feedback tracking control of robot manipulators. IEEE Trans. Autom. Control 45(6), 1203–1208 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khalil, H.K.: Adaptive output feedback control of nonlinear systems represented by input–output models. IEEE Trans. Autom. Control 41(2), 177–188 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Arefi, M.M., Jahed-Motlagh, M.R.: Robust synchronization of rossler systems with mismatched time-varying parameters. Nonlinear Dyn. 67(2), 1233–1245 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Arefi, M.M., Jahed-Motlagh, M.R.: Adaptive robust stabilization of a class of uncertain non-linear systems with mismatched time-varying parameters. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226(2), 204–214 (2011)

    Article  Google Scholar 

  25. Fischer, N., Dani, A., Sharma, N., Dixon, W.: Saturated control of an uncertain nonlinear system with input delay. Automatica 49(6), 1741–1747 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Narendra, K.S., Annaswamy, A.M.: A new adaptive law for robust adaptation without persistent excitation. IEEE Trans. Autom. Control 32(2), 134–145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control 26(5), 1139–1144 (1981)

  28. Souman, J.L., Giordano, P.R., Frissen, I., Luca, A.D., Ernst, M.O.: Making virtual walking real: perceptual evaluation of a new treadmill control algorithm. ACM Trans. Appl. Percept. 7(2), 11 (2010)

    Article  Google Scholar 

  29. Xian, B., Dawson, D., de Queiroz, M., Chen, J.: A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Trans. Autom. Control 49, 1206–1211 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, B., Xian, B., Zhang, Y., Zhang, X.: Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans. Ind. Electron. 62(5), 2891–2902 (2015)

    Article  Google Scholar 

  31. Chaillet, A., Loría, A.: Uniform semiglobal practical asymptotic stability for non-autonomous cascaded systems and applications. Automatica 44(2), 337–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jankovic, M., Sepulchre, R., Kokotovic, P.V.: Constructive Lyapunov stabilization of nonlinear cascade systems. IEEE Trans. Autom. Control 41(12), 1723–1735 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jang, J.O., Jeon, G.J.: A parallel neuro-controller for DC motors containing nonlinear friction. Neurocomputing 30(1), 233–248 (2000)

    Article  Google Scholar 

  34. Dixon, W.E., de Queiroz, M.S., Zhang, F., Dawson, D.M.: Tracking control of robot manipulators with bounded torque inputs. Robotica 17(02), 121–129 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation Korea (NRF) (2014R1A2A1A11053989) and Dual Use Technology Program of Civil and Military.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungwon Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbari Asl, H., Yoon, J. Robust trajectory tracking control of cable-driven parallel robots. Nonlinear Dyn 89, 2769–2784 (2017). https://doi.org/10.1007/s11071-017-3624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3624-9

Keywords

Navigation