Skip to main content
Log in

Theoretical analysis of dynamic behaviors of cable-stayed bridges excited by two harmonic forces

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To better understand the dynamic behaviors of cable-stayed bridges, this study investigates the dynamic behaviors of a cable-stayed shallow arch subjected to two external harmonic excitations using the analytical approach. First, dimensionless planar vibration equations of the system are obtained by applying the Hamilton principle, and three ordinary differential equations of the arch and the two cables are obtained by using the Galerkin discretization method. Second, modulation equations involving the amplitude and phase of the dynamic response of the system are derived by applying the method of multiple scales. Third, three simultaneous resonance cases are considered. Finally, parametric study results are illustrated through frequency responses, amplitude responses, phase plane and bifurcation diagrams. Chaos phenomenon is also detected and presented. To validate the developed analytical solutions, numerical simulations are conducted by applying the Runge–Kutta method to integrate the original ordinary differential equations. The results demonstrate that acceptable consistency is reached in the results obtained from the analytical solutions and the Runge–Kutta method in the three simulated cases. The obtained results show that the system’s dynamic responses in the three simulated cases exhibit similarities in their frequency and amplitude responses, while some qualitative differences exist in the phase plane portraits (e.g., period-1, period-2, period-3 solutions) and their bifurcation diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Wang, L., Zhao, Y.: Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances. Int. J. Solids Struct. 43(25–26), 7800–7819 (2006)

    Article  Google Scholar 

  2. Wei, M.H., Lin, K., Jin, L., et al.: Nonlinear dynamics of a cable-stayed beam driven by sub-harmonic and principal parametric resonance. Int. J. Mech. Sci. 110, 78–93 (2016)

    Article  Google Scholar 

  3. Song, M.T., Cao, D.Q., Zhu, W.D., et al.: Dynamic response of a cable-stayed bridge subjected to a moving vehicle load. Acta Mech. 227(10), 2925–2945 (2016)

    Article  MathSciNet  Google Scholar 

  4. Kang, H.J., Guo, T.D., Zhao, Y.Y., et al.: Dynamic modeling and in-plane 1:1:1 internal resonance analysis of cable-stayed bridge. Eur. J. Mech. A. Solids 62, 94–109 (2017)

    Article  MathSciNet  Google Scholar 

  5. Nayfeh, A.H.: Response of two-degree-of-freedom systems to multifrequency parametric excitations. J. Sound Vib. 88(1), 1–10 (1983)

    Article  MathSciNet  Google Scholar 

  6. Nayfeh, A.H.: The response of non-linear single-degree-of-freedom systems to multifrequency excitations. J. Sound Vib. 102(3), 403–414 (1985)

    Article  Google Scholar 

  7. Plaut, R.H., Hsieh, J.C.: Oscillations and instability of a shallow-arch under two-frequency excitation. J. Sound Vib. 102(2), 189–201 (1985)

    Article  Google Scholar 

  8. Plaut, R.H., Haquang, N., Mook, D.T.: Simultaneous responses in non-linear structural vibrations under two-frequency excitation. J. Sound Vib. 106(3), 361–376 (1986)

    Article  Google Scholar 

  9. Yang, S., Nayfeh, A.H., Mook, D.T.: Combination resonances in the response of the duffing oscillator to a three-frequency excitation. Acta Mech. 131(3–4), 235–245 (1998)

    Article  MathSciNet  Google Scholar 

  10. Ding, Hu, Jean, WZu: Periodic and chaotic responses of an axially accelerating viscoelastic beam under two-frequency excitations. Int. J. Appl. Mech. 5(2), 1–39 (2013)

    Article  Google Scholar 

  11. Sahoo, B., Panda, L.N., Pohit, G.: Nonlinear dynamics of a travelling beam subjected to multi-frequency parametric excitation. Appl. Mech. Mater. 592–594, 2076–2080 (2014)

    Article  Google Scholar 

  12. Sahoo, B., Panda, L.N., Pohit, G.: Combination, principal parametric and internal resonances of an accelerating beam under two frequency parametric excitation. Int. J. Non-Linear Mech. 2015(78), 35–44 (2016)

    Article  Google Scholar 

  13. Sofroniou, A., Bishop, S.: Dynamics of a parametrically excited system with two forcing terms. Mathematics 2, 172–195 (2014)

    Article  Google Scholar 

  14. Zhao, Y., Guo, Z., Huang, C., et al.: Analytical solutions for planar simultaneous resonances of suspended cables involving two external periodic excitations. Acta Mech. 229(11), 4393–4411 (2018)

    Article  MathSciNet  Google Scholar 

  15. Zhao, Y., Huang, C., Chen, L., et al.: Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects. J. Sound Vib. 416, 279–294 (2018)

    Article  Google Scholar 

  16. Malhotra, N., Namachchivaya, N.S.: Chaotic dynamics of shallow arch structures under 1:2 resonance. J. Eng. Mech. 123(6), 612–619 (1997)

    Article  Google Scholar 

  17. Gattulli, V., Morandini, M., Paolone, A.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthquake Eng. Struct. Dynam. 31(6), 1281–1300 (2002)

    Article  Google Scholar 

  18. Gattulli, V., Lepidi, M.: Nonlinear interactions in the planar dynamics of cable-stayed beam. Int. J. Solids Struct. 40(18), 4729–4748 (2003)

    Article  Google Scholar 

  19. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  20. Turmo, J., Luco, J.E.: Effect of hanger flexibility on dynamic response of suspension bridges. J. Eng. Mech. 136(12), 1444–1459 (2010)

    Article  Google Scholar 

  21. Abdel-Rohman, M.: Design of a simple controller to control suspension bridge nonlinear vibrations due to moving loads. J. Vib. Control 11, 867–885 (2005)

    Article  Google Scholar 

  22. Abdel-Rohman, M.: The influence of the higher order modes on the dynamic response of suspension bridges. J. Vib. Control 18(9), 1380–1405 (2011)

    Article  MathSciNet  Google Scholar 

  23. Caetano, E., Cunha, A., Gattulli, V., Lepidi, M.: Cable-deck dynamic interactions at the international Guadiana Bridge: on-site measurements and finite element modeling. Struct. Contr. Health Monit. 15(3), 237–264 (2008)

    Article  Google Scholar 

  24. Yau, J.D., Yang, Y.B.: Vibration of a suspension bridge installed with a water pipeline and subjected to moving trains. Eng. Struct. 30, 632–642 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by National Science Foundation of China under Grant Nos. 11972151, 11572117, 11502076 and 11872176, and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guirong Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order to simplify the expression of Galerkin integral coefficients in Eqs. (9) to (10), the following integrals are introduced.

\( d_{mm} = \int_{0}^{1} {y^{\prime}_{m} \varphi^{\prime}_{m} {\rm d}x_{m} } \), \( d_{33} = \int_{0}^{1} {y^{\prime}_{\rm a} (x)\phi^{\prime}_{\rm a} (x){\rm d}x} \), \( d_{0m} = \int_{0}^{1} {\varphi^{\prime}_{m} (x_{m} ){\rm d}x_{m} } \), \( d_{m0} = \int_{0}^{1} {y^{\prime}_{m} {\rm d}x_{m} } \), \( f_{mm} = \int_{0}^{1} {y^{\prime\prime}_{m} \varphi_{m} {\rm d}x_{m} } \), \( h_{mm} = \int_{0}^{1} {\varphi_{m} \varphi^{\prime\prime}_{m} {\rm d}x_{m} } \), \( l_{mm} = \int_{0}^{1} {\varphi^{\prime}_{m} \varphi^{\prime}_{m} {\rm d}x_{m} } \), \( s_{mm} = \int_{0}^{1} {x_{m} \varphi_{m} {\rm d}x_{m} } \), \( r_{33} = \int_{0}^{1} {\phi_{\rm a}^{(4)} \phi_{\rm a} {\rm d}x} \), \( \Gamma_{mm} = 1/\int_{0}^{1} {\varphi_{m} \varphi_{m} {\rm d}x_{m} } \quad (m = 0,1,2,3) \)where m = 0 denotes that the term does not exist, \( \varphi_{m} \) and \( y_{m} \) represent the mode shapes and initial configurations of cables and shallow-arch, respectively, and \( \varphi_{3} = \phi_{\rm a} \), \( y_{3} = y_{\rm a 0} \).

$$ b_{11} = - \Gamma_{33} P_{1} f_{03} ,\quad b_{12} = - \Gamma_{33} P_{2} f_{03} ,\quad b_{15} = - \frac{1}{2}\Gamma_{33} \sum\limits_{j = 1}^{2} {\kappa_{j} \cos^{4} \vartheta_{j} \phi_{\rm a}^{4} (s_{j} )} - \frac{1}{2}\Gamma_{33} \eta l_{33} h_{33} /\beta_{\rm a}^{4} , $$
$$ b_{13} = \omega_{\rm a}^{2} = - \Gamma_{33} \sum\limits_{j = 1}^{2} {\kappa_{j} \cos \vartheta_{j} \sin \vartheta_{j} \phi_{\rm a}^{2} (s_{j} )d_{j0} } + \Gamma_{33} \sum\limits_{j = 1}^{2} {\kappa_{j} \gamma_{\rm cj} \phi_{\rm a}^{2} (s_{j} )\sin^{2} \vartheta_{j} } - (\Gamma_{33} \eta d_{33} f_{33} - \Gamma_{33} r_{33} )/\beta^{4} , $$
$$ b_{14} = - \frac{1}{2}\Gamma_{33} \sum\limits_{j = 1}^{2} {\kappa_{j} \phi_{\rm a}^{3} (s_{j} )\cos^{2} \vartheta_{j} \sin \vartheta_{j} } - \Gamma_{33} \sum\limits_{j = 1}^{2} {\kappa_{j} \cos^{3} \vartheta_{j} \phi_{\rm a}^{3} (s_{j} )d_{j0} } + \Gamma_{33} \sum\limits_{j = 1}^{2} {\kappa_{j} \gamma_{j} \cos^{2} \vartheta_{j} \sin \vartheta_{j} \phi_{\rm a}^{3} (s_{j} )} - \frac{1}{2}\Gamma_{33} \eta l_{33} f_{33} /\beta_{\rm a}^{4} - \Gamma_{33} \eta d_{33} h_{33} /\beta_{\rm a}^{4} , $$
$$ b_{16} = - \Gamma_{33} \kappa_{1} d_{11} \sin \vartheta_{1} \phi_{\rm a} (s_{1} ),\quad b_{17} = \left( { - \frac{1}{2}d_{01} \sin 2\vartheta_{1} - \cos^{2} \vartheta_{1} d_{11} - \cos^{2} \vartheta_{2} d_{10} \varphi^{\prime}_{1} (1) + \gamma_{\rm c1} \cos \vartheta_{1} \sin \vartheta_{1} \varphi^{\prime}_{1} (1)} \right)\Gamma_{33} \kappa_{1} \phi_{\rm a}^{2} (s_{1} ), $$
$$ b_{18} = \left( { - \frac{1}{2}l_{11} \sin \vartheta_{1} - \cos \vartheta_{1} d_{11} \varphi^{\prime}_{1} (1)} \right)\Gamma_{33} \kappa_{1} \phi_{\rm a} (s_{1} ),\quad b_{19} = - \Gamma_{33} \kappa_{2} d_{22} \sin \vartheta_{2} \phi_{\rm a} (s_{2} ), $$
$$ b_{110} = - \left( {\frac{1}{2}\sin 2\vartheta_{2} d_{02} - \cos \vartheta_{2}^{2} d_{22} - \cos \vartheta_{2}^{2} d_{02} \varphi^{\prime}_{2} (1) + \gamma_{\rm c2} \cos \vartheta_{2} \sin \vartheta_{2} \varphi^{\prime}_{2} (1)} \right)\Gamma_{33} \kappa_{2} \phi_{\rm a}^{2} (s_{2} ), $$
$$ b_{111} = - \left( {\frac{1}{2}l_{22} \sin \vartheta_{2} + d_{22} \cos \vartheta_{2} \varphi^{\prime}_{2} (1)} \right)\Gamma_{33} \kappa_{2} \phi_{\rm a} (s_{2} ),\quad b_{112} = - (d_{01} + \frac{1}{2}\varphi^{\prime}_{1} (1))\Gamma_{33} \kappa_{1} \cos^{3} \vartheta_{1} \phi_{\rm a}^{3} (s_{2} ), $$
$$ b_{113} = - \left( {\frac{1}{2}l_{11} + d_{01} \varphi^{\prime}_{1} (1)} \right)\Gamma_{33} \kappa_{1} \cos^{2} \vartheta_{1} \phi_{\rm a}^{2} (s_{1} ),\quad b_{114} = - \frac{1}{2}\Gamma_{33} \kappa_{2} \cos^{3} \vartheta_{2} \phi_{\rm a}^{3} (s_{2} )(d_{10} + \varphi^{\prime}_{2} (1)), $$
$$ b_{115} = - \frac{1}{2}\Gamma_{33} \kappa_{2} \cos^{2} \vartheta_{2} \phi_{\rm a}^{2} (s_{2} )(l_{22} - d_{02} \varphi^{\prime}_{2} (1)),\quad b_{116} = - \frac{1}{2}\Gamma_{33} \kappa_{1} \cos \vartheta_{1} \phi_{\rm a} (s_{1} )\varphi^{\prime}_{1} (1)l_{11} ,\quad b_{210} = - \frac{1}{2}\lambda_{1} \Gamma_{11} l_{11} h_{11} /\beta_{1}^{2} $$
$$ b_{117} = - \frac{1}{2}\Gamma_{33} \kappa_{2} \cos \vartheta_{2} \phi_{\rm a} (s_{2} )\varphi^{\prime}_{2} (1)l_{22} ,\quad b_{21} = \mu_{1} \Gamma_{11} \cos \vartheta_{1} \phi_{\rm a} (s_{1} )S_{11} ,\quad b_{22} = \Gamma_{11} \cos \vartheta_{1} \phi_{\rm a} (s_{1} )S_{11} , $$
$$ b_{23} = (\gamma_{\rm c1} \sin \vartheta_{1} - \lambda_{1} \cos \vartheta_{1} d_{10} )\Gamma_{11} \phi_{\rm a} (s_{1} )f_{11} /\beta_{1}^{2} ,\quad b_{24} = - \frac{1}{2}\Gamma_{11} \lambda_{1} f_{11} \phi_{\rm a}^{2} (s_{1} )\cos^{2} \vartheta_{1} /\beta_{1}^{2} , $$
$$ b_{25} = - \frac{1}{2}\lambda_{1} \Gamma_{11} d_{11} f_{11} /\beta_{1}^{2} - \Gamma_{11} h_{11} /\beta_{1}^{2} ,\quad b_{26} = - \left( {\frac{1}{2}l_{11} f_{11} + d_{11} h_{11} } \right)\lambda_{1} \Gamma_{11} /\beta_{1}^{2} ,\quad b_{29} = - \frac{1}{2}\lambda_{1} \Gamma_{11} \cos^{2} \vartheta_{1} \phi_{\rm a}^{2} (s_{1} )h_{11} /\beta_{1}^{2} , $$
$$ b_{27} = - \lambda_{1} \Gamma_{11} \cos \vartheta_{1} \phi_{\rm a} (s_{1} )(d_{01} f_{11} + d_{10} h_{11} )/\beta_{1}^{2} + \gamma_{\rm c1} \lambda_{1} \Gamma_{11} \sin \vartheta_{1} \phi_{\rm a} (s_{1} )h_{11} /\beta_{1}^{2} ,\quad b_{28} = - \lambda_{1} \Gamma_{11} \cos \vartheta_{1} \phi_{\rm a} (s_{1} )d_{01} h_{11} /\beta_{1}^{2} , $$
$$ b_{31} = \mu_{2} \cos \vartheta_{2} \phi_{\rm a} (s_{2} )\Gamma_{22} S_{22} ,\quad b_{32} = \Gamma_{22} \cos \vartheta_{2} \phi_{\rm a} (s_{2} )S_{22} ,\quad b_{33} = \lambda_{2} \Gamma_{22} \phi_{\rm a} (s_{2} )f_{22} (\sin \vartheta_{2} - \cos \vartheta_{2} d_{20} )/\beta_{2}^{2} , $$
$$ b_{34} = - \frac{1}{2}\lambda_{2} \Gamma_{22} \cos^{2} \vartheta_{2} \phi_{\rm a}^{2} (s_{2} )f_{22} /\beta_{2}^{2} ,\quad b_{35} = - \lambda_{2} \Gamma_{22} d_{11} f_{22} /\beta_{2}^{2} - \Gamma_{22} h_{22} /\beta_{2}^{2} ,\quad b_{36} = \lambda_{2} \Gamma_{22} (d_{22} h_{22} - \frac{1}{2}l_{22} f_{22} )/\beta_{2}^{2} , $$
$$ b_{37} = - \lambda_{2} \Gamma_{22} \cos \vartheta_{2} \phi_{\rm a} (s_{2} )(d_{02} f_{22} + d_{20} h_{22} )/\beta_{2}^{2} + \gamma_{\rm c2} \lambda_{2} \Gamma_{22} \sin \vartheta_{2} \phi_{\rm a} (s_{2} )h_{22} /\beta_{2}^{2} ,\quad b_{38} = - \lambda_{2} \Gamma_{22} \cos \vartheta_{2} \phi_{\rm a} (s_{2} )d_{02} h_{22} /\beta_{2}^{2} , $$
$$ b_{39} = - \frac{1}{2}\lambda_{2} \varGamma_{22} \cos^{2} \vartheta_{2} \phi_{\rm a}^{2} (s_{2} )h_{22} /\beta_{2}^{2} ,\quad b_{310} = - \frac{1}{2}\lambda_{2} \varGamma_{22} l_{22} h_{22} /\beta_{2}^{2} . $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Cong, Y. & Yan, G. Theoretical analysis of dynamic behaviors of cable-stayed bridges excited by two harmonic forces. Nonlinear Dyn 102, 965–992 (2020). https://doi.org/10.1007/s11071-020-05763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05763-8

Keywords

Navigation