Skip to main content
Log in

Resonance analysis between deck and cables in cable-stayed bridges with coupling effect of adjacent cables considered

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear dynamic model of a shallow arch with multiple cables is developed to model a long-span cable-stayed bridge. Based on the veering phenomenon of cable-stayed bridges, the in-plane modal internal resonance between the first mode of the shallow arch and the first mode of the cable is investigated under both primary resonance and subharmonic resonance. Modulation equations of the dynamic system are obtained by Galerkin discretization and the multiple scales method, in which the equilibrium solution of modulation equations is obtained by the Newton–Raphson method. Meanwhile, the Runge–Kutta method is applied to directly solve the ordinary differential equations to verify the accuracy of the perturbation analysis. Numerical analysis shows that the internal resonance occurs in adjacent cables; the energy transfer mechanism and the dynamic behavior of system become more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Sun, C., Zhao, Y., Peng, J., et al.: Multiple internal resonances and modal interaction processes of a cable stayed bridge physical model subjected to an invariant single-excitation. Eng. Struct. 172, 938–955 (2018)

    Article  Google Scholar 

  2. Irvine, H.M.: Cable Structures. The MIT Press, Cambridge (1981)

    Google Scholar 

  3. Luongo, A., Rega, G., Vestroni, F.: Non-linear free vibrations of an elastic cable. Int. J. Nonlinear Mech. 19, 39–52 (1984)

    Article  MATH  Google Scholar 

  4. Hagedorn, P., SchFer, B.: On non-linear free vibrations of an elastic cable. Int. J. Nonlinear Mech. 15, 333–340 (1980)

    Article  MATH  Google Scholar 

  5. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Nonlinear Mech. 27, 233–250 (1992)

    Article  MATH  Google Scholar 

  6. Zhao, Y., Wang, L.: On the symmetric modal interaction of the suspended cable: three-to-one internal resonance. J. Sound Vib. 294, 1073–1093 (2006)

    Article  Google Scholar 

  7. Guo, T., Kang, H., Wang, L., et al.: Cable dynamics under non-ideal support excitations: nonlinear dynamic interactions and asymptotic modelling. J. Sound Vib. 384, 253–272 (2016)

    Article  Google Scholar 

  8. Abou-Rayan, A.M., Nayfeh, A.H., Mook, D.T., et al.: Nonlinear response of a parametrically excited buckled beam. Nonlinear Dyn. 4, 499–525 (1993)

    Article  Google Scholar 

  9. Abhyankar, N.S., Hall, E.K., Hanagud, S.V.: Chaotic vibrations of beams: numerical solution of partial differential equations. J. Appl. Mech. 60, 167–174 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blair, K.B., Krousgrill, C.M., Farris, T.N.: Nonlinear dynamic response of shallow arches to harmonic forcing. J. Sound Vib. 194, 353–367 (1992)

    Article  Google Scholar 

  11. Lacarbonara, W.: Theoretical and experimental investigation of nonlinear vibrations of buckled beams. Virginia Polytechnic and State University, Blacksburg (1997). Ph.D Thesis

  12. Zhao, Y., Peng, J., Zhao, Y., et al.: Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonances of suspended cables. Nonlinear Dyn. 89, 2815–2827 (2017)

    Article  MathSciNet  Google Scholar 

  13. Gattulli, V., Morandini, M., Paolone, A.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthq. Eng. Struct. Dyn. 31, 1281–1300 (2010)

    Article  Google Scholar 

  14. Fujino, Y., Warnitchai, P., Pacheco, B.M.: Experimental and analytical study of autoparametric resonance in a 3DOF model of cable-stayed-beam. Nonlinear Dyn. 4, 111–138 (1993)

    Article  Google Scholar 

  15. Wei, M., Xiao, Y., Liu, H.: Bifurcation and chaos of a cable–beam coupled system under simultaneous internal and external resonances. Nonlinear Dyn. 67, 1969–1984 (2012)

    Article  MathSciNet  Google Scholar 

  16. Wei, M., Xiao, Y., Liu, H., et al.: Nonlinear responses of a cable-beam coupled system under parametric and external excitations. Arch. Appl. Mech. 84, 173–185 (2014)

    Article  MATH  Google Scholar 

  17. Cong, Y., Kang, H., Guo, T., et al.: One-to-one internal resonance of a cable-beam structure subjected to a concentrated load. J. Sound Vib. 529, 116915 (2022)

    Article  Google Scholar 

  18. Kang, H., Guo, T., Zhao, Y., et al.: Dynamic modeling and in-plane 1:1:1 internal resonance analysis of cable-stayed bridge. Eur. J. Mech. A Solids 62, 94–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kang, H., Guo, T., Zhu, W.: Analysis On the in-plane 2:2:1 internal resonance of a complex cable-stayed bridge system under external harmonic excitation. J. Comput. Nonlinear Dyn. 16, 101001 (2021)

    Article  Google Scholar 

  20. Han, H., Liu, L., Cao, D.: Forced vibration of a cable-stayed beam by Green’s function approach. Int. J. Struct. Stab. Dyn. 20, 2050055 (2020)

    Article  MathSciNet  Google Scholar 

  21. Wang, Z.: Modelling with Lagrange’s method and experimental analysis in cable-stayed beam. Int. J. Mech. Sci. 176, 105518 (2020)

    Article  Google Scholar 

  22. Jalali, M.H., Rideout, G.: Three-dimensional dynamic modelling and validation for vibration of a beam-cable system. Math. Comput. Model. Dyn. Syst. 27, 87–116 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gattulli, V., Lepidi, M.: Localization and veering in the dynamics of cable-stayed bridges. Comput. Struct. 85, 1661–1678 (2007)

    Article  Google Scholar 

  24. Caetano, E., Cunha, A., Gattulli, V., et al.: Cable-deck dynamic interactions at the international Guadiana Bridge: on-site measurements and finite element modelling. Struct. Control. Health Monit. 15, 237–264 (2010)

    Article  Google Scholar 

  25. Kandil, A.: Internal resonances among the first three modes of a hinged-hinged beam with cubic and quintic nonlinearities. Int. J. Nonlinear Mech. 127, 103592 (2020)

    Article  Google Scholar 

  26. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1981)

    MATH  Google Scholar 

  27. Yi, Z., Wang, L., Kang, H., et al.: Modal interaction activations and nonlinear dynamic response of shallow arch with both ends vertically elastically constrained for two-to-one internal resonance. J. Sound Vib. 333, 5511–5524 (2014)

    Article  Google Scholar 

  28. Turmo, J., Luco, J.E.: Effect of hanger flexibility on dynamic response of suspension bridges. J. Eng. Mech. 136, 1444–1459 (2010)

    Google Scholar 

  29. Nayfeh, A.H., Raouf, R.A.: Non-linear oscillation of circular cylindrical shells. Int. J. Solids Struct. 23, 1625–1638 (1987)

    Article  MATH  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (11972151, 11872176 and 12202109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyue Cong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ \begin{aligned} & m = \int_{0}^{1} {\phi^{2} } \left( s \right){\text{d}}s,\quad b_{1} = \int_{0}^{1} {\phi \left( s \right)y^{\prime \prime } \left( s \right)} {\text{ d}}s,\quad b_{2} = \int_{0}^{1} \phi \left( s \right)\phi^{\prime \prime } \left( s \right){\text{d}}s, \\ & b_{3} = \int_{0}^{1} {\phi^{\prime } \left( s \right)y^{\prime } \left( s \right){\text{d}}s} ,\quad b_{4} = \int_{0}^{1} {\phi^{\prime \prime \prime \prime } \left( s \right)} \phi \left( s \right){\text{d}}s,\quad b_{5} = \int_{0}^{1} {\phi^{\prime } \left( s \right)\phi^{\prime } \left( s \right)} {\text{ d}}s \\ & \Gamma_{nn} = \frac{1}{{\beta_{n}^{2} \int_{0}^{1} {\varphi_{n} \left( {x_{n} } \right)\varphi_{n} \left( {x_{n} } \right)} {\text{ d}}x_{n} }},\quad g_{nn} = \int_{0}^{1} {x_{n} \varphi_{n} \left( {x_{n} } \right)} {\text{ d}}x_{n} ,\quad f_{nn} = \int_{0}^{1} {y_{n}^{\prime \prime } } \left( {x_{n} } \right)\varphi_{n} \left( {x_{n} } \right){\text{d}}x_{n} , \\ & m_{nn} = \int_{0}^{1} {\varphi_{n}^{\prime } \left( {x_{n} } \right)\varphi_{n}^{\prime } \left( {x_{n} } \right) \, } {\text{d}}x_{n} ,\quad c_{nn} = \int_{0}^{1} {\varphi_{n}^{\prime } \left( {x_{n} } \right)y_{n}^{\prime } \left( {x_{n} } \right)} {\text{ d}}x_{n} ,\quad c_{0n} = \int_{0}^{1} {\varphi_{n}^{\prime } } \left( {x_{n} } \right){\text{d}}x_{n} , \\ & c_{n0} = \int_{0}^{1} {y_{n}^{\prime } } \left( {x_{n} } \right){\text{d}}x_{n} ,\quad h_{nn} = \int_{0}^{1} {\varphi_{n}^{\prime \prime } } \left( {x_{n} } \right)\varphi_{n} \left( {x_{n} } \right){\text{d}}x_{n} . \\ \end{aligned} $$

Appendix B

$$ \begin{aligned} d_{1} & = - \frac{{B\eta b_{1} }}{{m\beta^{4} }},\quad d_{2} = - \frac{{B\eta b_{2} }}{{m\beta^{4} }},\quad d_{5} = - \frac{{\eta b_{5} b_{2} }}{{2m\beta^{4} }}, \\ d_{31} & = \frac{{K_{1} \gamma_{1} \phi \left( {s_{1} } \right)\sin^{2} \theta_{1} }}{m} - \frac{{K_{1} \phi \left( {s_{1} } \right)c_{10} \sin 2\theta_{1} }}{2m},\quad d_{32} = \frac{{K_{2} \gamma_{2} \phi \left( {s_{2} } \right)\sin^{2} \theta_{2} }}{m} - \frac{{K_{2} \phi \left( {s_{2} } \right)c_{20} \sin 2\theta_{2} }}{2m},\quad d_{33} = \frac{{K_{3} \gamma_{3} \phi (s_{3} )\sin^{2} \theta_{3} }}{m} - \frac{{K_{3} \phi (s_{3} )c_{30} \sin 2\theta_{3} }}{2m}, \\ d_{40} & = - \frac{{\eta b_{5} b_{1} }}{{2m\beta^{4} }} - \frac{{b_{2} b_{3} }}{{m\beta^{4} }},\quad d_{41} = - \frac{{K_{1} \phi^{3} \left( {s_{1} } \right)\sin 2\theta_{1} \cos \theta_{1} }}{4m},\quad d_{42} = - \frac{{K_{2} \phi^{3} \left( {s_{2} } \right)\cos \theta_{2} \sin 2\theta_{2} }}{4m},\quad d_{43} = - \frac{{K_{3} \phi^{3} \left( {s_{3} } \right)\sin 2\theta_{3} \cos \theta_{3} }}{4m}, \\ d_{61} & = - \frac{{K_{1} \phi^{2} \left( {s_{1} } \right)c_{01} \sin 2\theta_{1} }}{2m},\quad d_{62} = - \frac{{K_{2} \phi^{2} \left( {s_{2} } \right)c_{02} \sin 2\theta_{2} }}{2m},\quad d_{63} = - \frac{{K_{3} \phi^{2} \left( {s_{3} } \right)c_{03} \sin 2\theta_{3} }}{2m}, \\ d_{71} & = - \frac{{K_{1} \phi \left( {s_{1} } \right)c_{11} \sin \theta_{1} }}{m},\quad d_{72} = - \frac{{K_{2} \phi \left( {s_{2} } \right)c_{22} \sin \theta_{2} }}{m},\quad d_{73} = - \frac{{K_{3} \phi \left( {s_{3} } \right)c_{33} \sin \theta_{3} }}{m}, \\ d_{81} & = - \frac{{K_{1} \phi \left( {s_{1} } \right)m_{11} \sin \theta_{1} }}{m},\quad d_{82} = - \frac{{K_{2} \phi \left( {s_{2} } \right)m_{22} \sin \theta_{2} }}{m},\quad d_{83} = - \frac{{K_{3} \phi \left( {s_{3} } \right)m_{33} \sin \theta_{3} }}{m}, \\ \end{aligned} $$
$$ \begin{aligned} r_{{11}} & = \left( { - \lambda _{1} \phi \left( {s_{1} } \right)c_{{10}} f_{{11}} \cos \theta _{1} + \gamma _{1} \lambda _{1} \phi \left( {s_{1} } \right)f_{{11}} \sin \theta _{1} } \right)\Gamma _{{11}} ,\quad r_{{12}} = \left( { - \lambda _{2} \phi \left( {s_{2} } \right)c_{{20}} f_{{22}} \cos \theta _{2} + \gamma _{2} \lambda _{2} \phi \left( {s_{2} } \right)f_{{22}} \sin \theta _{2} } \right)\Gamma _{{22}} ,\quad r_{{13}} = \left( { - \lambda _{3} \phi \left( {s_{3} } \right)c_{{30}} f_{{33}} \cos \theta _{3} + \gamma _{3} \lambda _{3} \phi \left( {s_{3} } \right)f_{{33}} \sin \theta _{3} } \right)\Gamma _{{33}} , \\ r_{{21}} & = - \frac{1}{2}\Gamma _{{11}} \lambda _{1} \phi ^{2} \left( {s_{1} } \right)f_{{11}} \cos ^{2} \theta _{1} ,\quad r_{{22}} = - \frac{1}{2}\Gamma _{{22}} \lambda _{2} \phi ^{2} \left( {s_{2} } \right)f_{{22}} \cos ^{2} \theta _{2} ,\quad r_{{23}} = - \frac{1}{2}\Gamma _{{33}} \lambda _{3} \phi ^{2} \left( {s_{3} } \right)f_{{33}} \cos ^{2} \theta _{3} \\ r_{{31}} & = - \left( {\lambda _{1} c_{{11}} f_{{11}} + h_{{11}} } \right)\Gamma _{{11}} ,\quad r_{{32}} = - \left( {\lambda _{2} c_{{22}} f_{{22}} + h_{{22}} } \right)\Gamma _{{22}} ,\quad r_{{33}} = - \left( {\lambda _{3} c_{{33}} f_{{33}} + h_{{33}} } \right)\Gamma _{{33}} \\ r_{{41}} & = - \frac{1}{2}\left( {\lambda _{1} m_{{11}} f_{{11}} + 2\lambda _{1} c_{{11}} } \right)\Gamma _{{11}} ,\quad r_{{42}} = - \frac{1}{2}\left( {\lambda _{2} m_{{22}} f_{{22}} + 2\lambda _{2} c_{{22}} } \right)\Gamma _{{22}} ,\quad r_{{43}} = - \frac{1}{2}\left( {\lambda _{3} m_{{33}} f_{{33}} + 2\lambda _{3} c_{{33}} } \right)\Gamma _{{33}} \\ r_{{51}} & = - \frac{1}{2}\lambda _{1} m_{{11}} h_{{11}} \Gamma _{{11}} ,\quad r_{{52}} = - \frac{1}{2}\lambda _{2} m_{{22}} h_{{22}} \Gamma _{{22}} ,\quad r_{{53}} = - \frac{1}{2}\lambda _{3} m_{{33}} h_{{33}} \Gamma _{{33}} , \\ \end{aligned} $$
$$ \begin{aligned} r_{61} & = - \left( {\lambda_{1} \phi \left( {s_{1} } \right)c_{10} f_{11} \cos \theta_{1} + \lambda_{1} \phi \left( {s_{1} } \right)c_{10} h_{11} \cos \theta_{1} - \gamma_{1} \phi \left( {s_{1} } \right)h_{11} \sin \theta_{1} } \right)\Gamma_{11} ,\quad r_{62} = - \left( {\lambda_{2} \phi \left( {s_{2} } \right)c_{20} f_{22} \cos \theta_{2} + \lambda_{2} \phi \left( {s_{2} } \right)c_{20} h_{22} \cos \theta_{2} - \gamma_{2} \phi \left( {s_{2} } \right)h_{22} \sin \theta_{2} } \right)\Gamma_{22} ,\quad r_{63} = - \left( {\lambda_{3} \phi \left( {s_{3} } \right)c_{30} f_{33} \cos \theta_{3} + \lambda_{3} \phi \left( {s_{3} } \right)c_{30} h_{33} \cos \theta_{3} - \gamma_{3} \phi \left( {s_{3} } \right)h_{33} \sin \theta_{3} } \right)\Gamma_{33} , \\ r_{71} & = - \frac{{\lambda_{1} \phi^{2} \left( {s_{1} } \right)h_{11} \Gamma_{11} \cos^{2} \theta_{1} }}{2},\quad r_{72} = - \frac{{\lambda_{2} \phi^{2} \left( {s_{2} } \right)h_{22} \Gamma_{22} \cos^{2} \theta_{2} }}{2},\quad r_{73} = - \frac{{\lambda_{3} \phi^{2} \left( {s_{3} } \right)h_{33} \Gamma_{33} \cos^{2} \theta_{3} }}{2}, \\ r_{81} & = - \lambda_{1} \phi \left( {s_{1} } \right)c_{01} h_{11} \Gamma_{11} \cos \theta_{1} ,\quad r_{82} = - \lambda_{2} \phi \left( {s_{2} } \right)c_{02} h_{22} \Gamma_{22} \cos \theta_{2} ,\quad r_{83} = - \lambda_{3} \phi \left( {s_{3} } \right)c_{03} h_{33} \Gamma_{33} \cos \theta_{3} \\ r_{91} & = \mu_{1} \phi \left( {s_{1} } \right)g_{11} \Gamma_{11} \beta_{1}^{2} \cos \theta_{1} ,\quad r_{92} = \mu_{2} \phi \left( {s_{2} } \right)s_{22} \Gamma_{22} \beta_{2}^{2} \cos \theta_{2} ,\quad r_{93} = \mu_{3} \phi \left( {s_{3} } \right)g_{33} \Gamma_{33} \beta_{3}^{2} \cos \theta_{3} , \\ r_{101} & = \phi \left( {s_{1} } \right)g_{11} \Gamma_{11} \beta_{1}^{2} \cos \theta_{1} ,\quad r_{102} = \phi \left( {s_{2} } \right)g_{22} \Gamma_{22} \beta_{2}^{2} \cos \theta_{2} ,\quad r_{103} = \phi \left( {s_{3} } \right)\Gamma_{33} \beta_{3}^{2} g_{33} \cos \theta_{3} . \\ \end{aligned} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Cai, Y., Cong, Y. et al. Resonance analysis between deck and cables in cable-stayed bridges with coupling effect of adjacent cables considered. Nonlinear Dyn 111, 6295–6316 (2023). https://doi.org/10.1007/s11071-022-08180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08180-1

Keywords

Navigation