Skip to main content
Log in

Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new nonlinear integrable fifth-order equation with temporal and spatial dispersion is investigated, which can be used to describe shallow water waves moving in both directions. By performing the singularity manifold analysis, we demonstrate that this generalized model is integrable in the sense of Painlevé for one set of parametric choices. The simplified Hirota method is employed to construct the one-, two-, three-soliton solutions with non-typical phase shifts. Subsequently, an extended projective Riccati expansion method is presented and abundant travelling wave solutions are constructed uniformly. Furthermore, several new interaction solutions between periodic waves and kinky waves are also derived via a direct method. The rich interactions including overtaking collision, head-on collision and periodic-soliton collision are analyzed by some graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  2. Khouri, S.A.: New ansatz for obtaining wave solutions of the generalized Camassa–Holm equation. Chaos Solitons Fractals 25, 705–710 (2005)

    MathSciNet  Google Scholar 

  3. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Leblond, H., Mihalache, D.: Few-optical-cycle solitons: modified Korteweg–de Vries sine–Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 79, 063835 (2009)

    Google Scholar 

  5. Khalique, C.M.: Solutions and conservation laws of Benjamin–Bona–Mahony–Peregrine equation with power-law and dual power-law nonlinearities. Pramana J. Phys. 80, 413–427 (2013)

    Google Scholar 

  6. Wazwaz, A.M., Tantawy, S.A.E.: Solving the (3+1)-dimensional KP Boussinesq and BKP-Boussinesq equations by the simplified Hirota method. Nonlinear Dyn. 88, 3017–3021 (2017)

    MathSciNet  Google Scholar 

  7. Wazwaz, A.M.: A new fifth-order nonlinear integrable equation: multiple soliton solutions. Phys. Scr. 83, 015012 (2011)

    MATH  Google Scholar 

  8. Wazwaz, A.M.: A new generalized fifth-order nonlinear integrable equation. Phys. Scr. 83, 035003 (2011)

    MATH  Google Scholar 

  9. Wang, G., Liu, X., Zhang, Y.: Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2313–2320 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Kuo, C.K.: Resonant multi-soliton solutions to two fifth-order KdV equations via the simplified linear superposition principle. Mod. Phys. Lett. B 33, 1950299 (2018)

    MathSciNet  Google Scholar 

  11. Gratus, J., Kinsler, P., McCall, M.W.: On spacetime transformation optics: temporal and spatial dispersion. New J. Phys. 18, 123010 (2016)

    Google Scholar 

  12. Ashmead, J.: Time dispersion in quantum mechanics. J. Phys. Conf. Ser. 1239, 012015 (2019)

    Google Scholar 

  13. Schelte, C., Pimenov, A., Vladimirov, A.G.: Tunable Kerr frequency combs and temporal localized states in time-delayed Gires–Tournois interferometers. Optics Lett. 44, 4925–4928 (2019)

    Google Scholar 

  14. Schelte, C., Camelin, P., Marconi, M., et al.: Third order dispersion in time-delayed systems. Phys. Rev. Lett. 123, 043902 (2019)

    Google Scholar 

  15. Wazwaz, A.M.: Kink solutions for three new fifth order nonlinear equations. Appl. Math. Model. 38, 110–118 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Lamb, K.G., Yan, L.R.: The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory. J. Phys. Oceanogr. 26, 2712–2734 (1996)

    Google Scholar 

  17. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property of partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Hereman, W., Goktas, U., Colagrosso, M.D.: Algorithmic integrability tests for nonlinear differential and lattice equations. Comput. Phys. Commun. 115, 428–446 (1998)

    Google Scholar 

  19. Xu, G.Q., Li, Z.B.: Symbolic computation of the Painlevé test for nonlinear partial differential equations using Maple. Comput. Phys. Commun. 161, 65–75 (2004)

    MATH  Google Scholar 

  20. Wazwaz, A.M.: Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form. Nonlinear Dyn. 91, 877–883 (2018)

    MATH  Google Scholar 

  21. Xu, G.Q., Wazwaz, A.M.: Integrability aspects and localized wave solutions for a new (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 98, 1379–1390 (2019)

    Google Scholar 

  22. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  23. Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equation. J. Math. Phys. 28, 1732 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Wang, X.B., Tian, S.F., Qin, C.Y.: Characteristics of the solitary waves and rogue waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation. Appl. Math. Lett. 72, 58–64 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, Y., Liu, Y.P.: Breather and lump solutions for nonlocal Davey–Stewartson II equation. Nonlinear Dyn. 96, 107–113 (2019)

    Google Scholar 

  26. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Wazwaz, A.M.: Multiple soliton solutions for the (2 + 1)-dimensional asymmetric Nizhanik–Novikov-Veselov equation. Nonlinear Anal. Theor. 72, 1314–1318 (2010)

    MATH  Google Scholar 

  28. Wazwaz, A.M.: Exact soliton and kink solutions for new (3 + 1)-dimensional nonlinear modified equations of wave propagation. Open Eng. 7, 169–174 (2017)

    Google Scholar 

  29. Dye, J.M., Parker, A.: On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves. J. Math. Phys. 42, 2567–2589 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, J.E., Li, Y.S.: Bidirectional solitons on water. Phys. Rev. E 67, 016306 (2003)

    MathSciNet  Google Scholar 

  31. Xu, G.Q., Li, Z.B.: Bidirectional solitary wave solutions and soliton solutions for two nonlinear evolution equations. Acta Phys. Sin. 52, 1848–1857 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Wazwaz, A.M.: N-soliton solutions for the integrable bidirectional sixth-order Sawada–Kotera equation. Appl. Math. Comput. 216, 2317–2320 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Xu, G.Q., Deng, S.F.: Painlevé analysis, integrability and exact solutions for a (2 + 1)-dimensional generalized Nizhnik–Novikov–Veselov equation. Eur. Phys. J. Plus 131, 385–396 (2016)

    Google Scholar 

  34. Xu, G.Q., Wazwaz, A.M.: Characteristics of integrability, bidirectional solitons and localized solutions for a (3 + 1)-dimensional generalized breaking soliton equation. Nonlinear Dyn. 96, 1989–2000 (2019)

    Google Scholar 

  35. Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary solutions to nonlinear evolution equations. Comput. Phys. Commun. 98, 288–296 (1996)

    MATH  Google Scholar 

  36. Yan, Z.Y., Zhang, H.Q.: New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics. Phys. Lett. A 252, 291–296 (1999)

    MathSciNet  MATH  Google Scholar 

  37. Fan, E.: Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method. J. Phys. A Math. Gen. 35, 6853–6872 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–72 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Baldwin, D., Goktas, U., Hereman, W.: Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs. J. Symb. Comput. 37, 669–705 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Wang, M.L., Li, X.Z., Zhang, J.L.: The \(\frac{G^{\prime }}{G}\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    MathSciNet  Google Scholar 

  41. Conte, R., Musette, M.: Link between solitary waves and projective Riccati equation. J. Phys. A Math. Gen. 25, 2609–2612 (1992)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, G.X., Li, Z.B., Duan, Y.S.: Exact solitary wave solutions of nonlinear wave equations. Sci. China Ser. A 44, 396–401 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Yao, R.X., Li, Z.B.: New exact solutions for three nonlinear evolution equations. Phys. Lett. A 297, 196–204 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Fu, Z.T., Liu, S.D., Liu, S.K.: New solutions to mKdV equation. Phys. Lett. A 326, 364–374 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Fokas, A.S., Pelinovsky, D.E., Sulaem, C.: Interaction of lumps with a line soliton for the DSII equation. Physica D 152, 189–198 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Lu, Z.M., Tian, E.M., Grimshaw, R.: Interaction of two lump solitons described by the Kadomtsev–Petviashvili I equation. Wave Motion 40, 123–135 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Hao, X.Z., Liu, Y.P., Tang, X.Y., Li, Z.B.: Nonlocal symmetries and interaction solutions of the Sawada–Kotera equation. Mod. Phys. Lett. B 30, 1650293 (2016)

    MathSciNet  Google Scholar 

  48. Tang, Y.N., Tao, S.Q., Zhou, M.L., Guan, Q.: Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations. Nonlinear Dyn. 89, 429–442 (2017)

    MathSciNet  Google Scholar 

  49. Huang, L.L., Yue, Y.F., Chen, Y.: Localized waves and interaction solutions to a (3 + 1)-dimensional generalized KP equation. Comput. Math. Appl. 76, 831–844 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Liu, Y.K., Li, B., An, H.L.: General high-order breathers, lumps in the (2 + 1)-dimensional Boussinesq equation. Nonlinear Dyn. 92, 2061–2076 (2018)

    Google Scholar 

  51. Liu, J.G., Zhu, W.H., Zhou, L.: Multi-waves, breather wave and lump-stripe interaction solutions in a (2 + 1)-dimensional variable-coefficient Korteweg–de Vries equation. Nonlinear Dyn. 97, 2127–2134 (2019)

    MATH  Google Scholar 

  52. Xu, G.Q.: Painlevé analysis, lump-kink solutions and localized excitation solutions for the (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Appl. Math. Lett. 97, 81–87 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Liu, J.G., Zhu, W.H., Zhou, L.: Multi-wave, breather wave, and interaction solutions of the Hirota–Satsuma–Ito equation. Eur. Phys. J. Plus 135, 20 (2020)

    Google Scholar 

  54. Keane, A.J., Mushtaq, A., Wheatland, M.S.: Alfven solitons in a Fermionic quantum plasma. Phys. Rev. E 83, 066407 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11871328). The authors would like to sincerely and deeply thank the editor and the anonymous referees for their helpful comments and concrete constructive suggestions, which led to an improved version of this paper. The first author would like to thank professor Y.P. Liu for her useful and constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Qiong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned}&a_1 a_3^{2}\,(4\,c_{{1}}k_{{1}} k_2^{3}-4\,c_{{1}}k_1^{3}k_{{2}}-c_{{2}}k_1^{4}+6\,c_{{2}}k_1^{2}k_2^{2 }-c_{{2}}k_2^{4}\\&\quad +\,3c_1^{2}c_{{2}}-2c_{{1}}k_{{1}}k_{{2}}-c_2^{3}-c_{{2}}k_1^{2}+c_{{2}}k_2^{2})\,=\,0,\\&a_2 a_3^{2}\,(4\,c_{{1}}k_{{1}} k_2^{3}-4\,c_{{1}}k_1^{3}k_{{2}}-c_{{2}}k_1^{4}+6\,c_{{2}}k_1^{2}k_2^{2 }-c_{{2}}k_2^{4}\\&\quad +\,3c_1^{2}c_{{2}}-2c_{{1}}k_{{1}}k_{{2}}-c_2^{3}-c_{{2}}k_1^{2}+c_{{2}}k_2^{2})\,=\,0,\\&a_1 a_3^{2}\,( 6\,c_{{1}}k_1^{2}k_2^{2}-c_{{1}}k_1^{4}-c_{{1}}k_2^{4}+4\,c_{{2}}k_1^{3}k_{{2}}-4\,c_{{2 }}k_{{1}}k_2^{3}\\&\quad +\,c_1^{3}-3\,c_{{1}}c_2^{2}-c_{{1}}k_1^{2}+c_{{1}}k_2^{2}+2\,c_{{2}}k_{{1}}k_{{2}})\,=\,0,\\&a_2 a_3^{2}\,( 6\,c_{{1}}k_1^{2}k_2^{2}-c_{{1}}k_1^{4}-c_{{1}}k_2^{4}+4\,c_{{2}}k_1^{3}k_{{2}}-4\,c_{{2 }}k_{{1}}k_2^{3}\\&\quad +\,c_1^{3}-3\,c_{{1}}c_2^{2}-c_{{1}}k_1^{2}+c_{{1}}k_2^{2}+2\,c_{{2}}k_{{1}}k_{{2}})\,=\,0,\\&a_1^2 a_{{3}}\,(6\,c_{{1}}k_1^{2}k_2^{2} -c_{{1}}k_1^{4}-c_{{1}}k_2^{4}+4\,c_{{2}}k_1^{3}k_{{2}}-4\,c_{{2}}k_{{ 1}}k_2^{3}\\&\quad +\,c_1^{3}-3c_{{1}}c_2^{2}-c_{{1}}k_1^{2}+c_{{1}}k_2^{2}+2c_{{2}}k_{{1}}k_{{2}})\,=\,0,\\&a_2^2 a_{{3}}\,(6\,c_{{1}}k_1^{2}k_2^{2} -c_{{1}}k_1^{4}-c_{{1}}k_2^{4}+4\,c_{{2}}k_1^{3}k_{{2}}-4\,c_{{2}}k_{{ 1}}k_2^{3}\\&\quad +\,c_1^{3}-3c_{{1}}c_2^{2}-c_{{1}}k_1^{2}+c_{{1}}k_2^{2}+2c_{{2}}k_{{1}}k_{{2}})\,=\,0,\\&a_1^2 a_{{3}}(4\,c_{{1}}k_{{1}}k_2^{3}-4\,c_{{1}}k_1^{3}k_{{2}} -c_{{2}}k_1^{4}+6\,c_{{2}}k_1^{2}k_2^{2}-c_{{2}}k_2^{4}\\&\quad +\,3c_1^{2}c_{{2}}-2c_{{1}}k_{{1}}k_{{2}}-c_2^{3} -c_{{2}}k_1^{2}+c_{{2}}k_2^{2})\,=\,0,\\ \\&a_2^2 a_{{3}}(4\,c_{{1}}k_{{1}}k_2^{3}-4\,c_{{1}}k_1^{3}k_{{2}} -c_{{2}}k_1^{4}+6\,c_{{2}}k_1^{2}k_2^{2}-c_{{2}}k_2^{4}\\&\quad +\,3\,c_1^{2}c_{{2}}-2c_{{1}}k_{{1}}k_{{2}}-c_2^{3} -c_{{2}}k_1^{2}+c_{{2}}k_2^{2})\,=\,0,\\&a_3\,(4\,a_1a_2c_{{1}}k_{{1}}k_2^{3}-20\,a_{{1}}a_{{2}}c_{{1}}k_1^{3}k_{{2}} -7\,a_{{1}}a_{{2}}c_{{2}}k_1^{4}\\&\quad +\,2\,a_{{1}}a_{{2}}c_{{2}}k_1^{2}k_2^{2}+a_{{1}}a_{{2}}c_{{2}}k_2^{4} -4\,a_3^{2}c_{{2}}k_2^{4}-a_3^{2}c_2^{3}\\&\quad +\,9\,a_{{1}}a_{{2}}c_1^{2}c_{{2}} -6\,a_{{1}}a_{{2}}c_{{1}}k_{{1}}k_{{2}}+a_{{1}}a_{{2}}c_2^{3}\\&\quad -\,3a_{{1}}a_{{2}}c_{{2}}k_1^{2}-a_{{1}}a_{{2}}c_{{2}}k_2^{2}+a_3^{2}c_{{ 2}}k_2^{2})=0,\\&a_1\,(2a_3^{2}c_{{1}}k_1^{2}k_2^{2}\,-\,16a_{{1}}a_{{2}}c_{{1}}k_1^{4} \,-\,2a_3^2c_1k_2^4\\&\quad \,+\,2a_3^2c_2k_1^3k_2\,-\,6a_3^2c_2k_1k_2^3\,+\,4a_1a_2c_1^3\\&\quad \,-\,4a_1a_2c_1k_1^2\,-\,3a_3^2c_1c_2^2\,+\,a_3^2c_1k_2^2\\&\quad +\,2a_3^2c_2k_1k_2)\,=\,0,\\&a_2\,(2a_3^{2}c_{{1}}k_1^{2}k_2^{2}\,-\,16a_{{1}}a_{{2}}c_{{1}}k_1^{4} \,-\,2a_3^2c_1k_2^4\\&\quad \,+\,2a_3^2c_2k_1^3k_2\,-\,6a_3^2c_2k_1k_2^3\,+\,4a_1a_2c_1^3\\&\quad \,-\,4a_1a_2c_1k_1^2\,-\,3a_3^2c_1c_2^2\,+\,a_3^2c_1k_2^2\\&\quad \,+\,2a_3^2c_2k_1k_2)\,=\,0.\\ \end{aligned}$$

Appendix B

In (56), the expression of \(\Lambda _1\) is listed as follows:

$$\begin{aligned} \Lambda _1= & {} [4c_2^2a_3^{2}(81k_1^{16}-900k_2^{2}k_1^{14}+4480k_2^{4}k_1^{12}\\&-13492k_2^{6}k_1^{10}+32730k_2^{8}k_1^{8}+24884k_2^{10}k_1^{6}\\&-8k_2^{6}k_1^{4}+2052k_2^{14}k_1^{2}-243k_2^{16}+324k_1^{14}\\&-2943k_2^{2}k_1^{12}+10922\,k_2^{4}k_1^{10}-18969k_2^{6}k_1^{8}\\&+81k_1^{8}+10399k_2^{10}k_1^{4}-4590k_2^{12}k_1^{2}+729k_2^{14}\\&+486k_1^{12}-3168k_2^{2}k_1^{10}+6315k_2^{4}k_1^{8}+54k_2^{8}k_1^{2}\\&+528k_2^{8}k_1^{4}+2484k_2^{10}k_1^{2}-729k_2^{12}+324k_1^{10}\\&-1107k_2^{2}k_1^{8}-226k_2^{4}k_1^{6}+1140k_2^{6}k_1^{6}+243k_2^{10}\\&-8120k_2^{12}k_1^{4}-1056k_2^{8}k_1^{6}+18k_1^{6}k_2^{2}+k_1^{4}k_2^{4}) \\&-4a_3^{2}k_1^{2}k_2^{2}(81k_1^{12}-738k_2^{2}k_1^{10}+2907k_2^{4}k_1^{8}\\&-8044k_2^{6}k_1^{6}-5881\,k_2^{8}k_1^{4}+1550\,k_2^{10}k_1^{2}\\&-243k_2^{12}+243k_1^{10}-1638k_2^{2}k_1^{8}+3730k_2^{4}k_1^{6}\\&+264\,k_2^{6}k_1^{4}-1789\,k_2^{8}k_1^{2}+486\,k_2^{10}+243\,k_1^{8}\\&-882\,k_1^{6}k_2^{2}-176\,k_1^{4}k_2^{4}-62\,k_1^{2}k_2^{6}-243\,k_2^{8}\\&+81k_1^{6}+18k_1^{4}k_2^{2}+k_1^{2}k_2^{4})(2k_1^{2}-2k_2^{2}+1)^{2}]\\&\quad /[16\,c_2^2\,a_{{2}}k_1^{2}( 2\,k_1^{2}-2\,k_2^{2}+1)( 81\,k_1^{12}+243k_1^{8}\\&+2907k_2^{4}k_1^{8}-8044k_2^{6}k_1^{6}-5881k_2^{8}k_1^{4}-243k_2^{12}\\&+1550\,k_2^{10}k_1^{2}+243\,k_1^{10}-1638\,k_2^{2}k_1^{8}+18k_1^{4}k_2^{2}\\ \\&+264k_2^{6}k_1^{4}-1789k_2^{8}k_1^{2}+486k_2^{10}-738\,k_2^{2}k_1^{10}\\&-882k_1^{6}k_2^{2}-176k_1^{4}k_2^{4}-62k_1^{2}k_2^{6}+3730k_2^{4}k_1^{6}\\&+81k_1^{6}-243 k_2^{8}+k_1^{2}k_2^{4})-16a_{{2}}k_1^{4}k_2^{2}(81k_1^{8}\\&-572k_1^{6}k_2^{2}+1958k_1^{4}k_2^{4}+1348k_1^{2}k_2^{6}-239k_2^{8}\\&+162k_1^{6}-654k_1^{4}k_2^{2}-66k_1^{2}k_2^{4}+238k_2^{6}\\&+81k_1^{4}+18k_1^{2}k_2^{2}+k_2^{4})(2k_1^{2}-2k_2^{2}+1)^{3}].\\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, GQ., Wazwaz, AM. Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dyn 101, 581–595 (2020). https://doi.org/10.1007/s11071-020-05740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05740-1

Keywords

Navigation