Skip to main content
Log in

Dynamics of solitons and breathers on a periodic waves background in the nonlocal Mel’nikov equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamics of general line solitons and breathers on a periodic line waves (PLWs) background in the nonlocal Mel’nikov (MK) equation are investigated via the KP hierarchy reduction method. By constraining different parametric conditions for a general type of tau functions of the KP hierarchy, two families of mixed solutions to the nonlocal MK equation are derived. The first family of mixed solutions illustrates general line solitons on a PLWs background. The simplest case of such mixed solutions shows the two-line solitons on a PLWs background, and the two-line solitons possess five different patterns: a mixture of one-dark-soliton and one-antidark-soliton, two-antidark-soliton, two-dark-soliton, degenerated two-dark-soliton, and degenerated two-anti-dark-soliton. The high-order mixed solutions display superposition of several individual simplest solutions. The second family of mixed solutions demonstrates general breathers on a PLWs background or on a nonzero constant background. The breathers are periodic in time and do not move in the (xy)-plane as time propagates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transform. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  2. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons. Plenum, New York (1984)

    MATH  Google Scholar 

  3. Takhtadjan, L., Faddeev, L.: The Hamiltonian Approach to Soliton Theory. Springer, Berlin (1987)

    Google Scholar 

  4. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  5. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    MATH  Google Scholar 

  6. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(PT\) symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Bender, C.M., Boettcher, S., Melisinger, P.N.: PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Ablowit, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Google Scholar 

  9. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Ablowitz, M.J., Feng, B.F., Luo, X.D., Musslimani, Z.H.: Reverse space-time nonlocal Sine-Gordon/Sinh-Gordon equations with nonzero boundary conditions. Stud. Appl. Math. 141, 267 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Ablowitz, M.J., Feng, B.F., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal reverse space-time nonlinear Schrödinger equation. Theor. Math. Phys. 196, 1241 (2018)

    MATH  Google Scholar 

  14. Sarma, A.K., Miri, M.A., Musslimani, Z.H., Christodoulides, D.N.: Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities. Phys. Rev. E. 89, 052918 (2014)

    Google Scholar 

  15. Rybalko, Y., Shepelsky, D.: Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation. J. Math. Phys. 60, 031504 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, Y.S., Qiu, D.Q., Cheng, Y., He, J.S.: Rational solution of the nonlocal nonlinear Schrödinger equation and its application in optics. Rom. J. Phys. 62, 108 (2017)

    Google Scholar 

  17. Li, M., Xu, T., Meng, D.X.: Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model. J. Phys. Soc. Jpn. 85, 124001 (2016)

    Google Scholar 

  18. Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E. 91, 033202 (2015)

    MathSciNet  Google Scholar 

  19. Gupta, S.K., Sarma, A.K.: Peregrine rogue wave dynamics in the continuous nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 36, 141 (2016)

    MathSciNet  Google Scholar 

  20. Yang, B., Yang, J.: General rogue waves in the nonlocal PT-symmetric nonlinear Schrödinger equation. arXiv:1711.05930 (2017)

  21. Gupta, S.K.: A string of Peregrine rogue waves in the nonlocal nonlinear Schrödinger equation with parity-time symmetric self-induced potential. Opt. Commun. 411, 1 (2018)

    Google Scholar 

  22. Yang, J.: General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. Phys. Rev. E 383, 328 (2019)

    Google Scholar 

  23. Wen, X.Y., Yan, Z.Y., Yang, Y.Q.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Chaos 26, 063123 (2016)

    MathSciNet  Google Scholar 

  24. Zhang, G.Q., Yan, Z.Y., Chen, Y.: Novel higher-order rational solitons and dynamics of the defocusing integrable nonlocal nonlinear Schrödinger equation via the determinants. Appl. Math. Lett. 69, 113 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Gürses, M., Pekcan, A.: Nonlocal nonlinear Schrödinger equations and their soliton solutions. J. Math. Phys. 59, 051501 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Khare, A., Saxena, A.: Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations. J. Math. Phys. 56, 032104 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Chen, K., Zhang, D.J.: Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction. Appl. Math. Lett. 75, 82 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Huang, X., Ling, L.M.: Soliton solutions for the nonlocal nonlinear Schrödinger equation. Euro. Phys. J. Plus 131, 148 (2016)

    Google Scholar 

  30. Rao, J.G., Cheng, Y., Porsezian, K., Mihalache, D., He, J.S.: \(PT\)-symmetric nonlocal Davey–Stewartson I equation: soliton solutions with nonzero background. Physica D 401, 132180 (2020)

    MathSciNet  Google Scholar 

  31. Yang, B., Yang, J.: Transformations between nonlocal and local integrable equations. Stud. Appl. Math. 140, 178 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Chen, K., Deng, X., Lou, S.Y., Zhang, D.J.: Solutions of nonlocal equations reduced from the AKNS hierarchy. Stud. Appl. Math. 141, 113 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Yan, Z.: Integrable \(PT\)-symmetric local and nonlocal vector nonlinear Schrödinger equations: a unified twoparameter model. Appl. Math. Lett. 47, 61 (2015)

    MathSciNet  Google Scholar 

  34. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete \(PT\)-symmetric model. Phys. Rev. E 90, 032912 (2014)

    Google Scholar 

  35. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 42, 699 (2017)

    MathSciNet  Google Scholar 

  37. Lou, S.Y., Huang, F.: Alice-Bob physics: coherent solutions of nonlocal KdV systems. Sci Rep 7, 869 (2017)

    Google Scholar 

  38. Ji, J.L., Zhu, Z.N.: Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform. J. Math. Anal. Appl. 453, 973 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Rao, J.G., Cheng, Y., He, J.S.: Rational and semi-rational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. 139, 568 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Rao, J.G., Zhang, Y.S., Fokas, A.S., He, J.S.: Rogue waves of the nonlocal Davey–Stewartson I equation. Nonlinearity 31, 4090 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 62, 480 (2018)

    MathSciNet  Google Scholar 

  42. Ma, L.Y., Shen, S.F., Zhu, Z.N.: Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation. J. Math. Phys. 58, 103501 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Yang, B., Chen, Y.: Dynamics of rogue waves in the partially \(PT\)-symmetric nonlocal Davey–Stewartson systems. Stud. Appl. Math. 141, 131 (2018)

    Google Scholar 

  44. Gürses, M.: Nonlocal Fordy–Kulish equations on symmetric spaces. Phys. Lett. A 381, 1791 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Yang, B., Chen, Y.: Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions. Chaos 28, 053104 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Sun, B.N.: General soliton solutions to a nonlocal long-wave-short-wave resonance interaction equation with nonzero boundary condition. Nonlinear Dyn. 92, 1369–1377 (2018)

    MATH  Google Scholar 

  47. Liu, W., Li, X.L.: General soliton solutions to a (2+1)-dimensional nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinear Dyn. 92, 1369–1377 (2018)

    Google Scholar 

  48. Liu, Y., Mihalache, D., He, J.S.: Families of rational solutions of the \(y\)-nonlocal Davey–Stewartson II equation. Nonlinear Dyn. 90, 2445–2455 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Cao, Y., Rao, J., Mihalache, D., He, J.S.: Semi-rational solutions for the \((2+1)\)-dimensional nonlocal Fokas system. Appl. Math. Lett. 80, 27–34 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Liu, W., Qin, Z. Y., Chow, K. W.: Families of rational and semi-rational solutions of the partial reverse space-time nonlocal MK equation. arXiv:1711.06059 (2017)

  52. Liu, W., Zhang, X.X., Li, X.L.: Bright and dark soliton solutions to the partial reverse space-time nonlocal Melnikov equation. Nonlinear Dyn. 94, 2177–2189 (2018)

    MATH  Google Scholar 

  53. Zhou, Z.X.: Darboux transformations and global explicit solutions for nonlocal Davey–Stewartson I equation. Stud. Appl. Math. 141, 186–204 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Yang, B., Chen, Y.: Dynamics of rogue waves in the partially \(PT\)-symmetric nonlocal Davey–Stewartson systems. Commun. Nonlinear Sci. Numer. Simul. 69, 287–303 (2019)

    MathSciNet  Google Scholar 

  55. MK, V.K.: On equations for wave interactions. Lett. Math. Phys. 7, 129–136 (1983)

    MathSciNet  Google Scholar 

  56. MK, V.K.: Wave emission and absorption in a nonlinear integrable system. Phys. Lett. A 118, 22–24 (1986)

    MathSciNet  Google Scholar 

  57. MK, V.K.: Reflection of waves in nonlinear integrable systems. J. Math. Phys. 28, 2603–2609 (1987)

    MathSciNet  Google Scholar 

  58. MK, V.K.: A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the x, y plane. Commun. Math. Phys. 112, 639–652 (1987)

    Google Scholar 

  59. Senthil, C., Radha, R., Lakshmanan, M.: Exponentially localized solutions of MK equation. Chaos Solitons Fractals 22, 705–712 (2004)

    MathSciNet  MATH  Google Scholar 

  60. Hase, Y., Hirota, R., Ohta, Y.: Soliton solutions of the Me’lnikov equations. J. Phys. Soc. Jpn 58, 2713–2720 (1989)

    Google Scholar 

  61. Han, Z., Chen, Y., Chen, J.C.: Bright-dark mixed N-soliton solutions of the multi-component MK system. J. Phys. Soc. Jpn. 86, 104008 (2017)

    Google Scholar 

  62. Mu, G., Qin, Z.Y.: Two spatial dimensional N-rogue waves and their dynamics in MK equation. Nonlinear Anal. RWA 18, 1–13 (2014)

    MATH  Google Scholar 

  63. Bao, N.S., Wazwaz, A.M.: Interaction of lumps and dark solitons in the MK equation. Nonlinear Dyn. 92, 2049–2059 (2018)

    MATH  Google Scholar 

  64. Zhang, X.X., Xu, T., Chen, Y.: Hybrid solutions to Melnikov system. Nonlinear Dyn. 94, 2841–2862 (2018)

    Google Scholar 

  65. Sato, M.: Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds. RIMS Kokyuroku 439, 30 (1981)

    Google Scholar 

  66. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943 (1983)

    MathSciNet  MATH  Google Scholar 

  67. Date, E., Kashiwara, M., Jimbo, M., Miwa, T.: Transformation groups for soliton equations. In: Jimbo, M., Miwa, T. (eds.) Nonlinear Integrable Systems-Classical Theory and Quantum Theory, pp. 39–119. World Scientific, Singapore (1983)

    Google Scholar 

  68. Ohta, Y., Wang, D., Yang, J.: General N-dark-dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127, 345 (2011)

    MathSciNet  MATH  Google Scholar 

  69. Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716 (2012)

    MathSciNet  MATH  Google Scholar 

  70. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11775121 and 11435005 and K. C. Wong Magna Fund in the Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunkai Liu.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this Appendix, we will present the proof procedure for Theorems 1 and 2. Since the solutions given in Theorems 1 and 2 are under nonzero boundary conditions, we employ the employing the following dependent variable transformations

$$\begin{aligned} \begin{aligned} \Psi =\sqrt{2} \frac{g(x,y,t)}{f(x,y,t)},u= 2( {\log } f(x,y,t))_{xx}, \end{aligned} \end{aligned}$$
(50)

to translate the nonlocal MK equation (14) into the following bilinear equation

$$\begin{aligned}&(D_{x}^{2}-iD_{y})g \cdot f =0,\nonumber \\&(D^{4}_{x}{+}D_xD_t{-}3D^2_{y})f \cdot f =2\kappa [f^2 {-}gg^{*}(-x,y,-t) ].\nonumber \\ \end{aligned}$$
(51)

According to the Sato theory [65,66,67,68,69,70], the following bilinear equations in the single component KP hierarchy

$$\begin{aligned} \begin{aligned}&\left( D^2_{x_1}-D_{x_2}\right) \tau _{n+1} \cdot \tau _n=0,\\&D_{x_1}D_{x_{-1}}-2)\tau _n \cdot \tau _n+2\tau _{n+1}\tau _{n-1}=0,\\&\left( D_{x_1}^4-3D_{x_{1}}D_{x_3}+4D_{x_{2}}^2\right) \tau _n \cdot \tau _n=0, \end{aligned} \end{aligned}$$
(52)

possess the following tau functions expressed via Gramian determinant

$$\begin{aligned} \begin{aligned} \tau _{n}=\det \limits _{1\le i,j\le N} (m_{ij}^{(n)}), \end{aligned} \end{aligned}$$
(53)

where the matrix elements are defined as

$$\begin{aligned} \begin{aligned}&m_{sj}^{(n)}={\widetilde{b}}_{s}\delta _{sj}+\frac{p_s+r_s}{p_s+q_j} \left( -\frac{p_s}{q_j}\right) ^{n}e^{\xi _s+\eta _j},\\&\xi _s= \frac{1}{p_s}x_{-1}+p_sx_1+p_s^2x_2+p_s^3x_3+\xi _{0,s},\\&\eta _j=\frac{1}{q_{j}}x_{-1}+q_jx_1-q_j^2x_2+q_j^3x_3+\eta _{0,j},\\ \end{aligned} \end{aligned}$$
(54)

and \(p_s,r_s,q_j,b_{s},\xi _{i0}\) and \(\eta _{0,j}\) are arbitrary complex constants.

To construct periodic solutions given in Theorem 1, we first take the variable transformations

$$\begin{aligned} \begin{aligned} x_{-1}=\kappa t, x_1=x, x_{2}=-iy,x_3=-4t, \end{aligned} \end{aligned}$$
(55)

and then the tau function defined in (53) can be rewritten as

$$\begin{aligned} \begin{aligned} \tau _{n}(x,y,t)=\prod _{s=1}^{N}(p_s+r_s)e^{\zeta _{s}}\det \limits _{1\le i,j\le N} ({\widehat{m}}_{ij}^{(n)}), \end{aligned} \end{aligned}$$
(56)

where

$$\begin{aligned} \begin{aligned} {\widehat{m}}_{sj}^{(n)}= {\widetilde{b}}_s\delta _{sj}e^{-\zeta _s}\frac{1}{p_s+r_s} +\frac{1}{p_s+q_j}\left( -\frac{p_s}{q_j}\right) ^n, \end{aligned} \end{aligned}$$
(57)

with

$$\begin{aligned} \begin{aligned} \zeta _s=&\xi _s+\eta _s\\ =&(p_s+q_s)x-i(p_s^2-q_s^2)y\\&+\left( \frac{\kappa }{p_s}+\frac{\kappa }{q_s} -4p_s^3-4q_s^3\right) t+\zeta _{0,s}, \end{aligned} \end{aligned}$$
(58)

In what follows, we consider \((2M+1)\times (2M+1)\) matrix for \(\tau _n\) (i.e., \(N=2M+1\) in (53)) and take the parameters satisfying the following constraint conditions

$$\begin{aligned} \begin{aligned} r_j&=-p_j+1,p_{M+s}=-p_s,q_{M+s}=-q_s,q_{s}\\&=p_s^*,q_{2M+1}=-p_{2M+1}^*,r_j=-p_j+1,\\ {\widetilde{b}}_{j}&=b_{j},b_{M+s}=-b_s^*,\\&{\widetilde{b}}_{2M+1} =ib_{2M+1},\zeta _{0,M+s}=\zeta _{0,s}, \end{aligned} \end{aligned}$$
(59)

for \(j=1,2,\ldots 2M\) and \(s=1,2,\ldots M\). Since

$$\begin{aligned} \begin{aligned} \zeta _s=&\xi _s+\eta _s\\ =&(p_s+p^*_s)x-i(p_s^2-p_s^{*2})y\\&+\left( \frac{\kappa }{p_s}+\frac{\kappa }{p^*_s}-4p_s^3-4p_s^{*3}\right) t+\zeta _{0,s}, \\ \zeta _{2M+1}=&\xi _{2M+1}+\eta _{2M+1}\\ =&\left( p_{2M+1}-p_{2M+1}^*\right) x\\&-i\left( p_{2M+1}^2-p_{2M+1}^{*2}\right) y\\&+\left( \frac{\kappa }{p_{2M+1}}-\frac{\kappa }{p^*_{2M+1}}\right. \\&\left. -4p_{2M+1}^3+4p_{2M+1}^{*3}\right) t+\zeta _{0,{2M+1}}, \end{aligned} \end{aligned}$$
(60)

thus

$$\begin{aligned} \begin{aligned} \zeta _{M+s}^*(-x,y,-t)&=\zeta _{s}(x,y,t), \zeta _{2M+1}^*(-x,y,-t)\\&=\zeta _{2M+1}(x,y,t), \end{aligned} \end{aligned}$$
(61)

and further obtain

$$\begin{aligned} \begin{aligned} {\widehat{m}}_{M+s,j}^{*(n)}(-x,y,-t)&=-b_{s}^*\delta _{M+s,j} e^{-\zeta _{s}}\\&\quad -\frac{1}{p_{s}^*+p_{M+j}}\left( -\frac{p_{M+j}}{p_{s}^*}\right) ^{-n}\\&=-{\widehat{m}}_{s,M+j}^{(-n)}(x,y,t), \end{aligned} \end{aligned}$$
(62)

similarly, the following conditions can also be derived

$$\begin{aligned} \begin{aligned} {\widehat{m}}_{s,M+j}^{*(n)}(-x,y,-t)=&-{\widehat{m}}_{M+s,j}^{(-n)}(x,y,t),\\ {\widehat{m}}_{M+s,M+j}^{*(n)}(-x,y,-t)=&-{\widehat{m}}_{j,s}^{(-n)}(x,y,t),\\ {\widehat{m}}_{2M+1,2M+1}^{*(n)}(-x,y,-t)=&-{\widehat{m}}_{2M+1,2M+1}^{(-n)}(x,y,t),\\ {\widehat{m}}_{2M+1,j}^{*(n)}(-x,y,-t)=&-{\widehat{m}}_{M+j,2M+1}^{(-n)}(x,y,t),\\ {\widehat{m}}_{2M+1,M+j}^{*(n)}(-x,y,-t)=&-{\widehat{m}}_{j,2M+1}^{(-n)}(x,y,t),\\ {\widehat{m}}_{s,2M+1}^{*(n)}(-x,y,-t)=&-{\widehat{m}}_{2M+1,M+s}^{(-n)}(x,y,t),\\ {\widehat{m}}_{M+s,2M+1}^{*(n)}(-x,y,-t)=&-{\widehat{m}}_{2M+1,s}^{(-n)}(x,y,t), \end{aligned} \end{aligned}$$
(63)

which results in the following nonlocal symmetry condition:

$$\begin{aligned} \begin{aligned} \tau _n^*(-x,y,-t)=(-1)^{3N}\tau _{-n}(x,y,t). \end{aligned} \end{aligned}$$
(64)

By defining

$$\begin{aligned} \begin{aligned} f(x,y,t)=\tau _0(x,y,t),g(x,y,t)=\tau _{1}(x,y,t), \end{aligned} \end{aligned}$$
(65)

then solutions to the nonlocal MK equation given in Theorem 1 would be obtained that completes the proof for Theorem 1.

Finally, we give the proof for Theorem 2. To derive more general periodic solutions to the nonlocal Mel’nikov equation (14), we choose different variable transformations

$$\begin{aligned} \begin{aligned} x_{-1}=-i\kappa t, x_1=ix, x_{2}=iy,x_3=4it. \end{aligned} \end{aligned}$$
(66)

The tau function \(\tau _n\) is rewritten as

$$\begin{aligned} \begin{aligned} \tau _{n}=\prod _{s=1}^{N}(p_s+r_s)e^{\xi _s+\eta _s}\det \limits _{1\le s,j\le N} ({\overline{m}}_{s,j}^{(n)}), \end{aligned} \end{aligned}$$
(67)

where the matrix elements \({\overline{m}}_{s,j}^{(n)}\) given by (67) become the following formula

$$\begin{aligned} \begin{aligned}&{\overline{m}}_{s,j}^{(n)}=\frac{{\widetilde{b}}_{s}\delta _{sj}}{(p_s+r_s)e^{\xi _s+\eta _j}}+\frac{1}{p_s+q_j}\left( -\frac{p_s}{q_j}\right) ^{n} ,\\&\xi _s= ip_sx+ip_s^2y+\left( 4ip_s^3-\frac{i\kappa }{p_s}\right) t+\xi _{0,s},\\&\eta _j=iq_jx-iq_j^2y+\left( 4iq_j^3-\frac{i\kappa }{q_j}\right) t+\eta _{0,j}. \end{aligned} \end{aligned}$$
(68)

Under the parameters satisfying the following constraint conditions

$$\begin{aligned} \begin{aligned}&{\widetilde{b}}_{sj}=1, r_j=q_j, q_j=p_j^*, \end{aligned} \end{aligned}$$
(69)

and \(\zeta _{0,s}\) are real for \(j=1,2,\ldots N\), then

$$\begin{aligned} \begin{aligned} \zeta _s=&\xi _s+\eta _s\\ =&i(p_s+p_s^*)x+i(p_s^2-p_s^{*2})y\\&+i\left( 4p_s^3+4p_s^{*3} -\frac{\kappa }{p_s}-\frac{\kappa }{p^*_s}\right) t+\zeta _{0,s}, \end{aligned} \end{aligned}$$
(70)

and one can derive the following condition

$$\begin{aligned} \begin{aligned} \zeta _s^*(-x,y,-t)=\zeta _{s}(x,y,t), \end{aligned} \end{aligned}$$
(71)

which can further yield

$$\begin{aligned} \begin{aligned} m_{s,j}^{*(n)}(-x,y,-t)&=m_{j,s}^{(-n)}(x,y,t), \tau _{n}^*(-x,y,-t)\\&=\tau _{-n}(x,y,t). \end{aligned} \end{aligned}$$
(72)

Again, defining \(f=\tau _0,g=\tau _1\) and taking

$$\begin{aligned} \begin{aligned} p_s=\frac{\omega _s}{2}+i\lambda _s,q_s=\frac{\omega _s}{2}-i\lambda _s, \end{aligned} \end{aligned}$$
(73)

the periodic solutions for the nonlocal MK equation given by Theorem 2 are obtained that completes Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, B. Dynamics of solitons and breathers on a periodic waves background in the nonlocal Mel’nikov equation. Nonlinear Dyn 100, 3717–3731 (2020). https://doi.org/10.1007/s11071-020-05623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05623-5

Keywords

Navigation