Skip to main content
Log in

Deformed breather and rogue waves for the inhomogeneous fourth-order nonlinear Schrödinger equation in alpha-helical proteins

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The inhomogeneous fourth-order nonlinear Schrödinger equation is investigated, which models the transport of energy along the inhomogeneous hydrogen bonding spines in alpha-helical proteins. The deformed breather and rogue waves solutions for the equation are derived via Darboux transformation. Thereinto, the modified limit procedure in generalized Darboux transformation is proposed to construct the expressions of higher-order rogue waves. Due to the presence of inhomogeneity, despite their diversity profiles, the shape, amplitude and pulse width of each deformed breather will change with time. When the coefficients of higher-order terms are varied, the propagating trajectories of breathers are changed. Head-on collision, partially coalesced, without interaction between two deformed breathers is found under diverse selected parameters. The temporal-spatial structures of the presented rogue waves exhibit certain valleys around one or several centers, and the peak heights of those rogue waves are more than three times that of the background. Additionally, the distributed area of the rogue wave will tend to be broaden/narrow along the temporal axis, with the variation of the coefficients of inhomogeneity and higher-order terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cruzeiro, L.: The Davydov/Scott model for energy storage and transport in proteins. J. Biol. Phys. 35, 43–55 (2009)

    Google Scholar 

  2. Veni, S.S., Latha, M.M.: Effect of inhomogeneity in energy transfer through alpha helical proteins with interspine coupling. Commun. Nonlinear Sci. Numer. Simul. 19(8), 2758–2770 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Georgiev, D.D., Glazebrook, J.F.: On the quantum dynamics of Davydov solitons in protein \(\alpha \)-helices. Phys. A 517, 257–269 (2019)

    MathSciNet  Google Scholar 

  4. Pang, X.F.: The theory of bio-energy transport in the protein molecules and its properties. Phys. Life Rev. 8, 264–286 (2011)

    Google Scholar 

  5. Jeba, K.A., Latha, M.M., Jain, S.R.: Phase space trajectories and Lyapunov exponents in the dynamics of an alpha-helical protein lattice with intra-and inter-spine interactions. Chaos 25, 113109 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Aboringong, E.N.N., Dikandé, A.M.: Exciton dynamics in amide-I \(\alpha \)-helix protein chains with long-range intermolecular interactions. Eur. Phys. J. E 41(3), 35 (2018)

    Google Scholar 

  7. Piazza, F., Sanejouand, Y.H.: Discrete breathers in protein structures. Phys. Biol. 5, 026001 (2008)

    Google Scholar 

  8. Peyrard, M., Farago, J.: Nonlinear localization in thermalized lattices: application to DNA. Phys. A 288, 199–217 (2000)

    Google Scholar 

  9. Latha, M.M., Veni, S.S.: Multisoliton interaction in discrete alpha-helical proteins with interspine coupling. Phys. Script. 83, 035001 (2011)

    MATH  Google Scholar 

  10. Kong, L.Q., Liu, J., Jin, D.Q., Ding, D.J., Dai, C.Q.: Soliton dynamics in the three-spine \(\alpha \)-helical protein with inhomogeneous effect. Nonlinear Dyn. 87(1), 83–92 (2017)

    Google Scholar 

  11. Smetlin, S., Latha, M.M., Vasanthi, C.C.: Localized excitations and influence of exciton-exciton, exciton-phonon interactions in a 3D vector model of alpha-helical protein system. Eur. Phys. J. D 70(10), 209 (2016)

    Google Scholar 

  12. Merlin, G., Latha, M.M.: Two exciton energy transfer in an inhomogeneous alpha-helical protein chain. Phys. D 265, 71–77 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Mvogo, A., Ben-Bolie, G.H., Kofané, T.C.: Solitary waves in an inhomogeneous chain of \(\alpha \)-helical proteins. Int. J. Mod. Phys. B 28(17), 1450109 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Okaly, J.B., Mvogo, A., Woulaché, R.L., Kofané, T.C.: Nonlinear dynamics of long-range diatomic chain. Phys. A 541, 123613 (2020)

    MathSciNet  Google Scholar 

  15. Daniel, M., Latha, M.M.: A generalized Davydov soliton model for energy transfer in alpha helical proteins. Phys. A 298, 351–370 (2001)

    MATH  Google Scholar 

  16. Kavitha, L., Daniel, M.: Integrability and soliton in a classical one-dimensional site-dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity. J. Phys. A 36, 10471 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Wang, P., Tian, B., Jiang, Y., Wang, Y.F.: Integrability and soliton solutions for an inhomogeneous generalized fourth-order nonlinear Schrödinger equation describing the inhomogeneous alpha helical proteins and Heisenberg ferromagnetic spin chains. Phys. B 411, 166–172 (2013)

    Google Scholar 

  18. Herrera, J., Maza, M.A., Minzoni, A.A., Smyth, N.F., Worthy, A.L.: Davydov soliton evolution in temperature gradients driven by hyperbolic waves. Phys. D 191, 156–177 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Simo, E.: Jacobian elliptic solitons in inhomogeneous alpha-helical proteins. Phys. Script. 80, 045801 (2009)

    MATH  Google Scholar 

  20. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Integrable Systems: Theory and Their Applications to Geometry. Springer, Dordrecht (2005)

    MATH  Google Scholar 

  21. Su, C.Q., Gao, Y.T., Xue, L., Wang, Q.M.: Nonautonomous solitons, breathers and rogue waves for the Gross-Pitaevskii equation in the Bose–Einstein condensate. Commun. Nonlinear Sci. Numer. Simul. 36, 457–467 (2016)

    MathSciNet  Google Scholar 

  22. Yong, X.L., Wang, G., Li, W., Huang, Y.H., Gao, J.W.: On the Darboux transformation of a generalized inhomogeneous higher-order nonlinear Schrödinger equation. Nonlinear Dyn. 87, 75–82 (2017)

    Google Scholar 

  23. Xu, T., Chen, Y.: Darboux transformation of the coupled nonisospectral Gross–Pitaevskii system and its multi-component generalization. Commun. Nonlinear Sci. Numer. Simul. 57, 276–289 (2018)

    MathSciNet  Google Scholar 

  24. Yong, X.L., Fan, Y.J., Huang, Y.H., Ma, W.X., Tian, J.: Darboux transformation and solitons for an integrable nonautonomous nonlinear integro-differential Schrödinger equation. Mod. Phys. Lett. B 31(30), 1750276 (2017)

    Google Scholar 

  25. Yao, Y.Q., Huang, Y.H.: High-order rogue-wave of the inhomogeneous nonlinear Hirota equation with a self-consistent source. Mod. Phys. Lett. B 33(08), 1950087 (2019)

    MathSciNet  Google Scholar 

  26. Islas, A., Schober, C.M.: Numerical investigation of the stability of the rational solutions of the nonlinear Schrödinger equation. Appl. Math. Comput. 305, 17–26 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Mao, J.J., Tian, S.F., Zou, L., Zhang, T.T., Yan, X.J.: Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation. Nonlinear Dyn. 95(4), 3005–3017 (2019)

    Google Scholar 

  28. Liu, Y., Qian, C., Mihalache, D., He, J.S.: Rogue waves and hybrid solutions of the Davey–Stewartson I equation. Nonlinear Dyn. 95(1), 839–857 (2019)

    Google Scholar 

  29. Van Gorder, R.A.: Optimal homotopy analysis and control of error for implicitly defined fully nonlinear differential equations. Numer. Algorithm 81, 181–196 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Xie, X.Y., Yang, S.K., Ai, C.H., Kong, L.C.: Integrable turbulence for a coupled nonlinear Schrödinger system. Phys. Lett. A 384, 126119 (2020)

    Google Scholar 

  31. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Google Scholar 

  32. Meng, G.Q., Pan, Y.S., Tan, H.F., Xie, X.Y.: Analytic solutions for the (2+1)-dimensional generalized sine-Gordon equations in nonlinear optics. Comput. Math. Appl. 76, 1535–1543 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Xie, X.Y., Meng, G.Q.: Dark solitons for a variable-coefficient AB system in the geophysical fluids or nonlinear optics. Eur. Phys. J. Plus 134, 359 (2019)

    Google Scholar 

  34. Zuo, D.W., Zhang, G.F.: Exact solutions of the nonlocal Hirota equations. Appl. Math. Lett. 93, 66–71 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Meng, X.H., Wen, X.Y., Piao, L., Wang, D.S.: Determinant solutions and asymptotic state analysis for an integrable model of transient stimulated Raman scattering. Optik 200, 163348 (2020)

    Google Scholar 

  36. Huang, Y.Z., Yu, X.: Solitons and peakons of a nonautonomous Camassa–Holm equation. Appl. Math. Lett. 98, 385–391 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Du, Z., Tian, B., Qu, Q.X., Chai, H.P., Zhao, X.H.: Vector breathers for the coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber. Chaos Soliton Fract. 130, 109403 (2020)

    Google Scholar 

  38. Fan, E.G., Chow, K.W.: Darboux covariant Lax pairs and infinite conservation laws of the (2+1)-dimensional breaking soliton equation. J. Math. Phys. 52, 023504 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Pei, L.M., Li, B., Xu, S.W.: The integrability conditions and solutions of nonautonomous Hirota equation. Nonlinear Dyn. 90(3), 2111–2118 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Brugarino, T., Sciacca, M.: Integrability of an inhomogeneous nonlinear Schrödinger equation in Bose–Einstein condensates and fiber optics. J. Math. Phys. 51, 093503 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Xie, X.Y., Liu, X.B.: Elastic and inelastic collisions of the semirational solutions for the coupled Hirota equations in a birefringent fiber. Appl. Math. Lett. 105, 106291 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Ma, Y.L.: Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 97(1), 95–105 (2019)

    MATH  Google Scholar 

  43. Peng, W.Q., Tian, S.F., Zhang, T.T.: Breather waves, high-order rogue waves and their dynamics in the coupled nonlinear Schrödinger equations with alternate signs of nonlinearities. Europhys. Lett. 127(5), 50005 (2019)

    Google Scholar 

  44. Lan, Z.Z.: Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fiber. Appl. Math. Lett. 98, 128–134 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Dudley, J.M., Genty, G., Mussot, A., Chabchoub, A., Dias, F.: Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys. 1, 675–689 (2019)

    Google Scholar 

  46. Dematteis, G., Grafke, T., Onorato, M., Vanden-Eijnden, E.: Experimental evidence of hydrodynamic instantons: the universal route to rogue waves. Phys. Rev. X 9, 041057 (2019)

    Google Scholar 

  47. Ducrozet, G., Bonnefoy, F., Mori, N., Fink, M., Chabchoub, A.: Experimental reconstruction of extreme sea waves by time reversal principle. J. Fluid Mech. 884, A20 (2020)

    MATH  Google Scholar 

  48. Efimov, V.B., Ganshin, A.N., Kolmakov, G.V., McClintock, P.V.E., Mezhov-Deglin, L.P.: Rogue waves in superfluid helium. Eur. Phys. J.-Spec. Top. 185, 181–193 (2010)

    MATH  Google Scholar 

  49. Li, S., Prinari, B., Biondini, G.: Solitons and rogue waves in spinor Bose–Einstein condensates. Phys. Rev. E 97, 022221 (2018)

    MathSciNet  Google Scholar 

  50. Shahein, R.A., El-Shehri, J.H.: Bifurcation analysis of dissipative rogue wave in electron-positron-ion plasma with relativistic ions and superthermal electrons. Chaos Soliton Fract. 128, 114–122 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to all the members of our discussion group. Our work has been supported by the Fundamental Research Funds for the Central Universities (Nos. 2017MS164 & 2017BD0094, NCEPU) and the National Natural Science Foundation of China under Grant No. 11905061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao-Qing Meng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The expressions for \(d_1(t)\) and \(d_2(t)\) in Eq. (12) are given as

$$\begin{aligned}&d_1(t)=-\frac{1}{2}\, \log \Bigg [\,\frac{m_2}{3 h_1^2 \left( \xi +2 t h_1\right) m_1}\nonumber \\&\quad -\frac{i \beta _1}{3 h_1 m_1}\sqrt{\frac{-m_1}{h_1^2 \left( \xi +2 t h_1\right) ^2 \beta _1}}\,\Bigg ]\nonumber \\&\quad +\frac{1}{2} \log \left( \xi +2 t h_1\right) \,\nonumber \\&\quad -\frac{1}{72 h_1^3}\,\sqrt{\frac{-m_1}{h_1^2 \left( \xi +2 t h_1\right) ^2 \beta _1}}\Bigg [-36 h_0 h_1^2 \nonumber \\&\quad -\frac{96 a^2 A \rho _1^2 \sigma _1^2 h_1^2}{\beta _1^2}+\frac{4 a^2 A h_1^2}{\left( \xi +2 t h_1\right) ^2} +\frac{a^2 A \sigma _1^2 m_3}{m_1\, \beta _1} \,\nonumber \\&\quad + \frac{4 a^2 A h_1^2 \sigma _1^2 \left( 2 h_1 \sigma _2-\xi \right) }{\left( \xi +2 t h_1\right) \, m_1}\Bigg ]\nonumber \\&\quad -\frac{1}{4}\log \left( \beta _1\right) -\log \Big [\delta _1(t)\Big ]+ \sigma _3\,, \end{aligned}$$
(A-1a)
$$\begin{aligned} d_2[t]&=\frac{1}{2}\, \log \Bigg [\,\frac{-m_2}{3 h_1^2 \left( \xi +2 t h_1\right) m_1}\nonumber \\&\quad +\frac{i \beta _1}{3 h_1 m_1}\sqrt{\frac{-m_1}{h_1^2 \left( \xi +2 t h_1\right) ^2 \beta _1}}\,\Bigg ]\nonumber \\&\quad +\frac{1}{2} \log \left( \xi +2 t h_1\right) \,\nonumber \\&\quad -\frac{1}{72 h_1^3}\,\sqrt{\frac{-m_1}{h_1^2 \left( \xi +2 t h_1\right) ^2 \beta _1}}\Bigg [36 h_0 h_1^2 \nonumber \\&\quad +\frac{96 a^2 A \rho _1^2 \sigma _1^2 h_1^2}{\beta _1^2}-\frac{4 a^2 A h_1^2}{\left( \xi +2 t h_1\right) ^2} -\frac{a^2 A \sigma _1^2 m_3}{m_1\, \beta _1} \,\nonumber \\&\quad -\frac{4 a^2 A h_1^2 \sigma _1^2 \left( 2 h_1 \sigma _2-\xi \right) }{\left( \xi +2 t h_1\right) \, m_1}\Bigg ]\nonumber \\&\quad -\frac{1}{4}\log \left( \beta _1\right) -\log \Big [\delta _2(t)\Big ]+ \sigma _4\,,\ \end{aligned}$$
(A-1b)

where \(m_1=256 \rho _1^2 h_1^4+4 \sigma _1^2 \sigma _2^2 h_1^2-4 \xi \sigma _1^2 \sigma _2 h_1+\xi ^2 \sigma _1^2\), \(m_2=-2 \sigma _1^2 \sigma _2 \left( t+\sigma _2\right) h_1+\xi \sigma _1^2 \left( t+\sigma _2\right) -128 \,\rho _1^2\, h_1^3\), \(m_3=512 \rho _1^2 h_1^4 -4 t \sigma _1^2 \sigma _2 h_1^2+2 \xi \sigma _1^2 \left( t-\sigma _2\right) h_1+\xi ^2 \sigma _1^2\), and \(\sigma _3\) and \(\sigma _4\) are constants.

Appendix B

The definition of the coefficients in Eq. (24) are expressed as

$$\begin{aligned} \theta _1&=i+ \frac{5\,(t+1)\,i}{2 n_3}\left( x+\frac{1471435}{1572864}-\frac{8125 }{9216 n_3}+\frac{175 }{9 n_3^2}\right) \nonumber \\&\quad -\frac{12366125 i \arctan \left[ \frac{5 (t+1)}{16}\right] }{50331648}\,, \end{aligned}$$
(A-2a)
$$\begin{aligned} n_2&=\big (25 t^2+50 t+281\big )^4 \,, \end{aligned}$$
(A-2b)
$$\begin{aligned} n_1&=\big (25 t^2+50 t+281\big )^2\,\big (7500 t^4+30000 t^3\nonumber \\&\quad +182975 t^2+305950 t+1011907\big )\,, \end{aligned}$$
(A-2c)
$$\begin{aligned} n_0&=t^{12}+12 t^{11}+\frac{3186 t^{10}}{25}+\frac{4172 t^9}{5}+\frac{616583 t^8}{125}\nonumber \\&\quad +\frac{2693464 t^7}{125}+\frac{804569642 t^6}{9375}+\frac{815250884 t^5}{3125}\,\nonumber \\&\quad +\frac{2052241197593 t^4}{2812500}+\frac{1048962591593 t^3}{703125}\nonumber \\&\quad +\frac{167769855736561 t^2}{58593750}\,\nonumber \\&\quad +\frac{286743955611433 t}{87890625}+\frac{33761501393177141}{8789062500}\,, \end{aligned}$$
(A-2d)
$$\begin{aligned} m_0&=t^{12}+12 t^{11}+\frac{3186 t^{10}}{25}+\frac{4172 t^9}{5}+\frac{591583 t^8}{125}\nonumber \\&\quad +\big (\frac{2493464}{125}+\frac{400 i}{3}\big ) t^7\,\nonumber \\&\quad +\big (\frac{683082142}{9375}+\frac{2800 i}{3}\big ) t^6\nonumber \\&\quad +\big (\frac{642275884}{3125}+6896 i\big ) t^5\nonumber \\&\quad +\big (\frac{1382086641343}{2812500}+\frac{75440 i}{3}\big ) t^4\,\nonumber \\&\quad +\big (\frac{617270535343}{703125}+\frac{6567728 i}{75}\big ) t^3\nonumber \\&\quad +\big (\frac{70600528830311}{58593750}+\frac{4239728 i}{25}\big ) t^2\,\nonumber \\&\quad +\big (\frac{91685863955183}{87890625} +\frac{544515056 i}{1875}\big ) t\nonumber \\&\quad +\big (\frac{1684758372895891}{8789062500}+\frac{355008656 i}{1875}\big )\,,\ \end{aligned}$$
(A-2e)

with \(n_3=(t+1)^2+\frac{256}{25}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, GQ., Pan, YS. & Xie, XY. Deformed breather and rogue waves for the inhomogeneous fourth-order nonlinear Schrödinger equation in alpha-helical proteins. Nonlinear Dyn 100, 2779–2795 (2020). https://doi.org/10.1007/s11071-020-05622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05622-6

Keywords

Navigation